Summary
The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American spelling) is a unit of length in the International System of Units (SI), equal to one billionth (short scale) of a metre (0.000000001m) and to 1000 picometres. One nanometre can be expressed in scientific notation as 1e-9m, and as 1/1000000000 metres. The nanometre was formerly known as the "millimicrometre" – or, more commonly, the "millimicron" for short – since it is 1/1000 of a micrometre, and was often denoted by the symbol mμ or, more rarely, as μμ (which is confusing, since μμ should logically refer to a millionth of a micron). The name combines the SI prefix nano- (from the Ancient Greek νάνος, nanos, "dwarf") with the parent unit name metre (from Greek μέτρον, metrοn, "unit of measurement"). Nanotechnologies are based on phenomena typically occurring on a scale of nanometres (see nanoscopic scale). The nanometre is often used to express dimensions on an atomic scale: the diameter of a helium atom, for example, is about 0.06 nm, and that of a ribosome is about 20 nm. The nanometre is also commonly used to specify the wavelength of electromagnetic radiation near the visible part of the spectrum: visible light ranges from around 400 to 700 nm. The ångström, which is equal to 0.1 nm, was formerly used for these purposes. Since the late 1980s, in usages such as the 32 nm and the 22 nm semiconductor node, it has also been used to describe typical feature sizes in successive generations of the ITRS Roadmap for miniaturized semiconductor device fabrication in the semiconductor industry. The CJK Compatibility block in Unicode has the symbol .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (3)
Related people (1)
Related concepts (45)
International System of Units
The International System of Units, internationally known by the abbreviation SI (for Système International), is the modern form of the metric system and the world's most widely used system of measurement. Established and maintained by the General Conference on Weights and Measures (CGPM), it is the only system of measurement with an official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce.
Nanometre
The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American spelling) is a unit of length in the International System of Units (SI), equal to one billionth (short scale) of a metre (0.000000001m) and to 1000 picometres. One nanometre can be expressed in scientific notation as 1e-9m, and as 1/1000000000 metres.
Wavelength
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings. Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency.
Show more
Related courses (9)
MICRO-530: Nanotechnology
This course gives the basics for understanding nanotechnology from an engineer's perspective: physical background, materials aspects and scaling laws, fabrication and imaging of nanoscale devices.
COM-502: Dynamical system theory for engineers
Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
CH-633: Advanced Solid State and Surface Characterization
State-of-the-art surface/thin film characterization methods of polycrystalline/nano/amorphous materials. Selected topics from thin film X-ray diffraction (GIWAXS, GISAXS, PDF), electronic and optical
Show more