Related concepts (18)
Magnetic anomaly
In geophysics, a magnetic anomaly is a local variation in the Earth's magnetic field resulting from variations in the chemistry or magnetism of the rocks. Mapping of variation over an area is valuable in detecting structures obscured by overlying material. The magnetic variation (geomagnetic reversals) in successive bands of ocean floor parallel with mid-ocean ridges was important evidence for seafloor spreading, a concept central to the theory of plate tectonics. Magnetic anomalies are generally a small fraction of the magnetic field.
Magnetostratigraphy
Magnetostratigraphy is a geophysical correlation technique used to date sedimentary and volcanic sequences. The method works by collecting oriented samples at measured intervals throughout the section. The samples are analyzed to determine their characteristic remanent magnetization (ChRM), that is, the polarity of Earth's magnetic field at the time a stratum was deposited. This is possible because volcanic flows acquire a thermoremanent magnetization and sediments acquire a depositional remanent magnetization, both of which reflect the direction of the Earth's field at the time of formation.
Geomagnetic excursion
A geomagnetic excursion, like a geomagnetic reversal, is a significant change in the Earth's magnetic field. Unlike reversals, an excursion is not a "permanent" re-orientation of the large-scale field, but rather represents a dramatic, typically a (geologically) short-lived change in field intensity, with a variation in pole orientation of up to 45° from the previous position. Excursion events typically only last a few thousand to a few tens of thousands of years, and often involve declines in field strength to between 0 and 20% of normal.
Earth's inner core
Earth's inner core is the innermost geologic layer of planet Earth. It is primarily a solid ball with a radius of about , which is about 20% of Earth's radius or 70% of the Moon's radius. There are no samples of Earth's core accessible for direct measurement, as there are for Earth's mantle. Information about Earth's core mostly comes from analysis of seismic waves and Earth's magnetic field. The inner core is believed to be composed of an iron–nickel alloy with some other elements.
Paleomagnetism
Paleomagnetism (occasionally palaeomagnetism) is the study of magnetic fields recorded in rocks, sediment, or archeological materials. Geophysicists who specialize in paleomagnetism are called paleomagnetists. Certain magnetic minerals in rocks can record the direction and intensity of Earth's magnetic field at the time they formed. This record provides information on the past behavior of the geomagnetic field and the past location of tectonic plates.
Earth's magnetic field
Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic field is generated by electric currents due to the motion of convection currents of a mixture of molten iron and nickel in Earth's outer core: these convection currents are caused by heat escaping from the core, a natural process called a geodynamo.
Dynamo theory
In physics, the dynamo theory proposes a mechanism by which a celestial body such as Earth or a star generates a magnetic field. The dynamo theory describes the process through which a rotating, convecting, and electrically conducting fluid can maintain a magnetic field over astronomical time scales. A dynamo is thought to be the source of the Earth's magnetic field and the magnetic fields of Mercury and the Jovian planets.
Lawrence Morley
Lawrence Whitaker Morley (February 19, 1920 – April 22, 2013) was a Canadian geophysicist and remote sensing pioneer. He was best known for his studies on the magnetic properties of the oceanic crust and their effect on plate tectonics and for starting the remote sensing program in Canada. Morley worked on the theory of continental drift similar to work by Britons Fred Vine and Drummond Matthews. The three contributed significantly to geology by relating the magnetic properties of ocean crust to the processes involved in the theory of plate tectonics.
Secular variation
The secular variation of a time series is its long-term, non-periodic variation (see decomposition of time series). Whether a variation is perceived as secular or not depends on the available timescale: a variation that is secular over a timescale of centuries may be a segment of what is, over a timescale of millions of years, a periodic variation. Natural quantities often have both periodic and secular variations. Secular variation is sometimes called secular trend or secular drift when the emphasis is on a linear long-term trend.
Chicxulub crater
The Chicxulub crater (tʃikʃuˈlub) is an impact crater buried underneath the Yucatán Peninsula in Mexico. Its center is offshore near the community of Chicxulub, after which it is named. It was formed slightly over 66 million years ago when a large asteroid, about in diameter, struck Earth. The crater is estimated to be in diameter and in depth. It is the second largest confirmed impact structure on Earth, and the only one whose peak ring is intact and directly accessible for scientific research.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.