Flow measurement is the quantification of bulk fluid movement. Flow can be measured using devices called flowmeters in various ways. The common types of flowmeters with industrial applications are listed below:
Obstruction type (differential pressure or variable area)
Inferential (turbine type)
Electromagnetic
Positive-displacement flowmeters, which accumulate a fixed volume of fluid and then count the number of times the volume is filled to measure flow.
Fluid dynamic (vortex shedding)
Anemometer
Ultrasonic flow meter
Mass flow meter (Coriolis force).
Flow measurement methods other than positive-displacement flowmeters rely on forces produced by the flowing stream as it overcomes a known constriction, to indirectly calculate flow. Flow may be measured by measuring the velocity of fluid over a known area. For very large flows, tracer methods may be used to deduce the flow rate from the change in concentration of a dye or radioisotope.
Both gas and liquid flow can be measured in physical quantities of kind volumetric or mass flow rates, with units such as liters per second or kilograms per second, respectively. These measurements are related by the material's density. The density of a liquid is almost independent of conditions. This is not the case for gases, the densities of which depend greatly upon pressure, temperature and to a lesser extent, composition.
When gases or liquids are transferred for their energy content, as in the sale of natural gas, the flow rate may also be expressed in terms of energy flow, such as gigajoule per hour or BTU per day. The energy flow rate is the volumetric flow rate multiplied by the energy content per unit volume or mass flow rate multiplied by the energy content per unit mass. Energy flow rate is usually derived from mass or volumetric flow rate by the use of a flow computer.
In engineering contexts, the volumetric flow rate is usually given the symbol , and the mass flow rate, the symbol .
For a fluid having density , mass and volumetric flow rates may be related by .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course aims to provide theoretical fundamentals in flow measurement science, and advanced knowledge regarding measurement methods, tools and instrumentation applied to experimental hydraulics, in
This course helps students acquire basic knowledge of the main concepts and equations of fluid mechanics and develop the skills necessary to work effectively in professional engineering practice.
Introduction aux phénomènes propagatifs dans les circuits hydrauliques, calculs de coups de béliers, comportement transitoire d'aménagements hydroélectriques, simulation numériques 1D du comportement
The Venturi effect is the reduction in fluid pressure that results when a fluid flows through a constricted section (or choke) of a pipe. The Venturi effect is named after its discoverer, the 18th-century Italian physicist Giovanni Battista Venturi. In inviscid fluid dynamics, an incompressible fluid's velocity must increase as it passes through a constriction in accord with the principle of mass continuity, while its static pressure must decrease in accord with the principle of conservation of mechanical energy (Bernoulli's principle).
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology. It can be divided into fluid statics, the study of fluids at rest; and fluid dynamics, the study of the effect of forces on fluid motion.
In fluid mechanics, pressure head is the height of a liquid column that corresponds to a particular pressure exerted by the liquid column on the base of its container. It may also be called static pressure head or simply static head (but not static head pressure). Mathematically this is expressed as: where is pressure head (which is actually a length, typically in units of meters or centimetres of water) is fluid pressure (i.e. force per unit area, typically expressed in pascals) is the specific weight (i.
Ionic wind, produced by electrohydrodynamic (EHD) processes, holds promise for efficient airflow generation using minimal power. However, practical applications have been limited by relatively low flow rates. This study introduces a novel prototype device ...
Amsterdam2024
We study the flow stability and spatiotemporal spectral dynamics of cellulose nanocrystal (CNC) suspensions in a custom Taylor-Couette flow cell using the intrinsic shear induced birefringence and liquid crystalline properties of CNC suspensions for flow v ...
Aip Publishing2024
,
The effects of apparatus-induced dispersion on nonuniform, density-dependent flow in a cylindrical soil column were investigated using a finite-element model. To validate the model, the results with an analytical solution and laboratory column test data we ...