Stirling's approximationIn mathematics, Stirling's approximation (or Stirling's formula) is an approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre. One way of stating the approximation involves the logarithm of the factorial: where the big O notation means that, for all sufficiently large values of , the difference between and will be at most proportional to the logarithm.
Generating functionIn mathematics, a generating function is a way of encoding an infinite sequence of numbers (an) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem.
Stirling numbers of the first kindIn mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles (counting fixed points as cycles of length one). The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the first kind.
Pascal's triangleIn mathematics, Pascal's triangle is a triangular array of the binomial coefficients arising in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, India, China, Germany, and Italy. The rows of Pascal's triangle are conventionally enumerated starting with row at the top (the 0th row). The entries in each row are numbered from the left beginning with and are usually staggered relative to the numbers in the adjacent rows.
Umbral calculusIn mathematics before the 1970s, the term umbral calculus referred to the surprising similarity between seemingly unrelated polynomial equations and certain shadowy techniques used to "prove" them. These techniques were introduced by John Blissard and are sometimes called Blissard's symbolic method. They are often attributed to Édouard Lucas (or James Joseph Sylvester), who used the technique extensively. In the 1930s and 1940s, Eric Temple Bell attempted to set the umbral calculus on a rigorous footing.
CombinationIn mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations). For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange. More formally, a k-combination of a set S is a subset of k distinct elements of S. So, two combinations are identical if and only if each combination has the same members.
Binomial typeIn mathematics, a polynomial sequence, i.e., a sequence of polynomials indexed by non-negative integers in which the index of each polynomial equals its degree, is said to be of binomial type if it satisfies the sequence of identities Many such sequences exist. The set of all such sequences forms a Lie group under the operation of umbral composition, explained below. Every sequence of binomial type may be expressed in terms of the Bell polynomials. Every sequence of binomial type is a Sheffer sequence (but most Sheffer sequences are not of binomial type).
Sheffer sequenceIn mathematics, a Sheffer sequence or poweroid is a polynomial sequence, i.e., a sequence (pn(x) : n = 0, 1, 2, 3, ...) of polynomials in which the index of each polynomial equals its degree, satisfying conditions related to the umbral calculus in combinatorics. They are named for Isador M. Sheffer. Fix a polynomial sequence (pn). Define a linear operator Q on polynomials in x by This determines Q on all polynomials. The polynomial sequence pn is a Sheffer sequence if the linear operator Q just defined is shift-equivariant; such a Q is then a delta operator.
Binomial coefficientIn mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula which using factorial notation can be compactly expressed as For example, the fourth power of 1 + x is and the binomial coefficient is the coefficient of the x2 term.
Empty productIn mathematics, an empty product, or nullary product or vacuous product, is the result of multiplying no factors. It is by convention equal to the multiplicative identity (assuming there is an identity for the multiplication operation in question), just as the empty sum—the result of adding no numbers—is by convention zero, or the additive identity. When numbers are implied, the empty product becomes one. The term empty product is most often used in the above sense when discussing arithmetic operations.