Allele frequency, or gene frequency, is the relative frequency of an allele (variant of a gene) at a particular locus in a population, expressed as a fraction or percentage. Specifically, it is the fraction of all chromosomes in the population that carry that allele over the total population or sample size. Microevolution is the change in allele frequencies that occurs over time within a population.
Given the following:
A particular locus on a chromosome and a given allele at that locus
A population of N individuals with ploidy n, i.e. an individual carries n copies of each chromosome in their somatic cells (e.g. two chromosomes in the cells of diploid species)
The allele exists in i chromosomes in the population
then the allele frequency is the fraction of all the occurrences i of that allele and the total number of chromosome copies across the population, i/(nN).
The allele frequency is distinct from the genotype frequency, although they are related, and allele frequencies can be calculated from genotype frequencies.
In population genetics, allele frequencies are used to describe the amount of variation at a particular locus or across multiple loci. When considering the ensemble of allele frequencies for many distinct loci, their distribution is called the allele frequency spectrum.
The actual frequency calculations depend on the ploidy of the species for autosomal genes.
The frequency (p) of an allele A is the fraction of the number of copies (i) of the A allele and the population or sample size (N), so
If , , and are the frequencies of the three genotypes at a locus with two alleles, then the frequency p of the A-allele and the frequency q of the B-allele in the population are obtained by counting alleles.
Because p and q are the frequencies of the only two alleles present at that locus, they must sum to 1. To check this:
and
If there are more than two different allelic forms, the frequency for each allele is simply the frequency of its homozygote plus half the sum of the frequencies for all the heterozygotes in which it appears.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
The theoretical part of this course covers classical genetics and contemporary genomics. Because bioinformatics has become important for genomic research, the course also includes practical applicatio
In biology, the word gene (from γένος, génos; meaning generation or birth or gender) can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function.
Genetic hitchhiking, also called genetic draft or the hitchhiking effect, is when an allele changes frequency not because it itself is under natural selection, but because it is near another gene that is undergoing a selective sweep and that is on the same DNA chain. When one gene goes through a selective sweep, any other nearby polymorphisms that are in linkage disequilibrium will tend to change their allele frequencies too. Selective sweeps happen when newly appeared (and hence still rare) mutations are advantageous and increase in frequency.
In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the population during that process. Thirdly, it is a phenotypic trait or adaptive trait, with a functional role in each individual organism, that is maintained and has evolved through natural selection. Historically, adaptation has been described from the time of the ancient Greek philosophers such as Empedocles and Aristotle.
The technique referred as ray approximation treats wave propagation in a heterogeneous medium at the infinitely small wavelength limit. This classic simplification allows useful approximate analytical results to be obtained in cases where complete descript ...
In settings with high tuberculosis (TB) endemicity, distinct genotypes of the Mycobacterium tuberculosis complex (MTBC) often differ in prevalence. However, the factors leading to these differences remain poorly understood. Here we studied the MTBC populat ...
This paper presents a rigorous assessment of natural frequencies associated with fault-originated travelling waves in power networks, factoring in the presence of multiple junctions and branches. The proposed assessment exploits the Baum-Liu-Tesche (BLT) e ...