Related concepts (21)
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
T1 space
DISPLAYTITLE:T1 space In topology and related branches of mathematics, a T1 space is a topological space in which, for every pair of distinct points, each has a neighborhood not containing the other point. An R0 space is one in which this holds for every pair of topologically distinguishable points. The properties T1 and R0 are examples of separation axioms. Let X be a topological space and let x and y be points in X. We say that x and y are if each lies in a neighbourhood that does not contain the other point.
Up to
Two mathematical objects a and b are called equal up to an equivalence relation R if a and b are related by R, that is, if aRb holds, that is, if the equivalence classes of a and b with respect to R are equal. This figure of speech is mostly used in connection with expressions derived from equality, such as uniqueness or count. For example, x is unique up to R means that all objects x under consideration are in the same equivalence class with respect to the relation R.
Subspace topology
In topology and related areas of mathematics, a subspace of a topological space X is a subset S of X which is equipped with a topology induced from that of X called the subspace topology (or the relative topology, or the induced topology, or the trace topology). Given a topological space and a subset of , the subspace topology on is defined by That is, a subset of is open in the subspace topology if and only if it is the intersection of with an open set in .
Uniform space
In the mathematical field of topology, a uniform space is a topological space with additional structure that is used to define uniform properties, such as completeness, uniform continuity and uniform convergence. Uniform spaces generalize metric spaces and topological groups, but the concept is designed to formulate the weakest axioms needed for most proofs in analysis. In addition to the usual properties of a topological structure, in a uniform space one formalizes the notions of relative closeness and closeness of points.
Open and closed maps
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. That is, a function is open if for any open set in the is open in Likewise, a closed map is a function that maps closed sets to closed sets. A map may be open, closed, both, or neither; in particular, an open map need not be closed and vice versa. Open and closed maps are not necessarily continuous.
Net (mathematics)
In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a generalization of the notion of a sequence. In essence, a sequence is a function whose domain is the natural numbers. The codomain of this function is usually some topological space. The motivation for generalizing the notion of a sequence is that, in the context of topology, sequences do not fully encode all information about functions between topological spaces.
Locally compact space
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood. In mathematical analysis locally compact spaces that are Hausdorff are of particular interest; they are abbreviated as LCH spaces. Let X be a topological space. Most commonly X is called locally compact if every point x of X has a compact neighbourhood, i.
Totally disconnected space
In topology and related branches of mathematics, a totally disconnected space is a topological space that has only singletons as connected subsets. In every topological space, the singletons (and, when it is considered connected, the empty set) are connected; in a totally disconnected space, these are the only connected subsets. An important example of a totally disconnected space is the Cantor set, which is homeomorphic to the set of p-adic integers. Another example, playing a key role in algebraic number theory, is the field Qp of p-adic numbers.
Connected space
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space is a if it is a connected space when viewed as a subspace of . Some related but stronger conditions are path connected, simply connected, and -connected.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.