Summary
Distributed Artificial Intelligence (DAI) also called Decentralized Artificial Intelligence is a subfield of artificial intelligence research dedicated to the development of distributed solutions for problems. DAI is closely related to and a predecessor of the field of multi-agent systems. Multi-agent systems and distributed problem solving are the two main DAI approaches. There are numerous applications and tools. Distributed Artificial Intelligence (DAI) is an approach to solving complex learning, planning, and decision-making problems. It is embarrassingly parallel, thus able to exploit large scale computation and spatial distribution of computing resources. These properties allow it to solve problems that require the processing of very large data sets. DAI systems consist of autonomous learning processing nodes (agents), that are distributed, often at a very large scale. DAI nodes can act independently, and partial solutions are integrated by communication between nodes, often asynchronously. By virtue of their scale, DAI systems are robust and elastic, and by necessity, loosely coupled. Furthermore, DAI systems are built to be adaptive to changes in the problem definition or underlying data sets due to the scale and difficulty in redeployment. DAI systems do not require all the relevant data to be aggregated in a single location, in contrast to monolithic or centralized Artificial Intelligence systems which have tightly coupled and geographically close processing nodes. Therefore, DAI systems often operate on sub-samples or hashed impressions of very large datasets. In addition, the source dataset may change or be updated during the course of the execution of a DAI system. In 1975 distributed artificial intelligence emerged as a subfield of artificial intelligence that dealt with interactions of intelligent agents. Distributed artificial intelligence systems were conceived as a group of intelligent entities, called agents, that interacted by cooperation, by coexistence or by competition.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.