In mathematics, noncommutative harmonic analysis is the field in which results from Fourier analysis are extended to topological groups that are not commutative. Since locally compact abelian groups have a well-understood theory, Pontryagin duality, which includes the basic structures of Fourier series and Fourier transforms, the major business of non-commutative harmonic analysis is usually taken to be the extension of the theory to all groups G that are locally compact. The case of compact groups is understood, qualitatively and after the Peter–Weyl theorem from the 1920s, as being generally analogous to that of finite groups and their character theory.
The main task is therefore the case of G that is locally compact, not compact and not commutative. The interesting examples include many Lie groups, and also algebraic groups over p-adic fields. These examples are of interest and frequently applied in mathematical physics, and contemporary number theory, particularly automorphic representations.
What to expect is known as the result of basic work of John von Neumann. He showed that if the von Neumann group algebra of G is of type I, then L2(G) as a unitary representation of G is a direct integral of irreducible representations. It is parametrized therefore by the unitary dual, the set of isomorphism classes of such representations, which is given the hull-kernel topology. The analogue of the Plancherel theorem is abstractly given by identifying a measure on the unitary dual, the Plancherel measure, with respect to which the direct integral is taken. (For Pontryagin duality the Plancherel measure is some Haar measure on the dual group to G, the only issue therefore being its normalization.) For general locally compact groups, or even countable discrete groups, the von Neumann group algebra need not be of type I and the regular representation of G cannot be written in terms of irreducible representations, even though it is unitary and completely reducible.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An introduction to methods of harmonic analysis.
Covers convergence of Fourier series, Hilbert transform, Calderon-Zygmund theory, Fourier restriction, and applications to PDE.
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
In mathematics, the Plancherel theorem (sometimes called the Parseval–Plancherel identity) is a result in harmonic analysis, proven by Michel Plancherel in 1910. It states that the integral of a function's squared modulus is equal to the integral of the squared modulus of its frequency spectrum. That is, if is a function on the real line, and is its frequency spectrum, then A more precise formulation is that if a function is in both Lp spaces and , then its Fourier transform is in , and the Fourier transform map is an isometry with respect to the L2 norm.
In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
In mathematics, a unitary representation of a group G is a linear representation π of G on a complex Hilbert space V such that π(g) is a unitary operator for every g ∈ G. The general theory is well-developed in the case that G is a locally compact (Hausdorff) topological group and the representations are strongly continuous. The theory has been widely applied in quantum mechanics since the 1920s, particularly influenced by Hermann Weyl's 1928 book Gruppentheorie und Quantenmechanik.
This Ph.D. thesis unveils the unique topological phenomena occurring in such networks, focusing on the intricate interplay between their Floquet topology, the presence of disorder, and their unitary scattering at microscopic and macroscopic scales. Using t ...
We study two-point functions of symmetric traceless local operators in the bulk of de Sitter spacetime. We derive the Kallen-Lehmann spectral decomposition for any spin and show that unitarity implies its spectral densities are nonnegative. In addition, we ...
We review some aspects of harmonic analysis for the Euclidean conformal group, including conformally-invariant pairings, the Plancherel measure, and the shadow transform. We introduce two efficient methods for computing these quantities: one based on weigh ...