In mathematics, noncommutative harmonic analysis is the field in which results from Fourier analysis are extended to topological groups that are not commutative. Since locally compact abelian groups have a well-understood theory, Pontryagin duality, which includes the basic structures of Fourier series and Fourier transforms, the major business of non-commutative harmonic analysis is usually taken to be the extension of the theory to all groups G that are locally compact. The case of compact groups is understood, qualitatively and after the Peter–Weyl theorem from the 1920s, as being generally analogous to that of finite groups and their character theory. The main task is therefore the case of G that is locally compact, not compact and not commutative. The interesting examples include many Lie groups, and also algebraic groups over p-adic fields. These examples are of interest and frequently applied in mathematical physics, and contemporary number theory, particularly automorphic representations. What to expect is known as the result of basic work of John von Neumann. He showed that if the von Neumann group algebra of G is of type I, then L2(G) as a unitary representation of G is a direct integral of irreducible representations. It is parametrized therefore by the unitary dual, the set of isomorphism classes of such representations, which is given the hull-kernel topology. The analogue of the Plancherel theorem is abstractly given by identifying a measure on the unitary dual, the Plancherel measure, with respect to which the direct integral is taken. (For Pontryagin duality the Plancherel measure is some Haar measure on the dual group to G, the only issue therefore being its normalization.) For general locally compact groups, or even countable discrete groups, the von Neumann group algebra need not be of type I and the regular representation of G cannot be written in terms of irreducible representations, even though it is unitary and completely reducible.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
MATH-405: Harmonic analysis
An introduction to methods of harmonic analysis. Covers convergence of Fourier series, Hilbert transform, Calderon-Zygmund theory, Fourier restriction, and applications to PDE.
MATH-502: Distribution and interpolation spaces
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
MATH-203(b): Analysis III
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
Show more
Related lectures (14)
Fourier Series: Harmonic Analysis
Covers the Fourier series representation of periodic signals and harmonic analysis.
Harmonic Analysis: Schwerte Functions
Explores Schwerte functions in harmonic analysis, emphasizing compact support and function convergence.
Harmonic Analysis: Classical Theory and Fourier Series
Covers classical harmonic analysis on the circle, Fourier series convergence, and applications in PDEs.
Show more
Related people (2)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.