Résumé
Le quark top (en abrégé t) est un quark, une particule élémentaire de la physique des particules. vignette|300px|Diagramme de désintégration des quarks. Comme tous les quarks, le quark top est un fermion. Il s'agit d'un quark de possédant une charge électrique de +2/3 e. Il est le quark le plus massif avec une masse de (presque autant qu'un atome d'or). L'antiparticule du quark top est l'antiquark top, de charge électrique −2/3 e. Le quark top interagit principalement par l'intermédiaire de l'interaction forte mais ne peut se désintégrer que par l'intermédiaire de l'interaction faible, presque exclusivement en un boson W et un quark bottom. Le modèle standard lui prédit une durée de vie d'environ , soit environ 20 fois moins que l'ordre de grandeur des durées des interactions fortes. En conséquence, le quark top ne peut pas former de hadron. vignette|300px|Diagramme d'une collision produisant une paire quark-top quark anti-top. Dans les années précédant la découverte du quark top, on réalisa que certaines mesures de précision des masses et des couplages des bosons vecteurs de l'interaction électrofaible étaient très sensibles à la valeur de la masse du quark top. Ces effets permirent la détection indirecte du quark top, même si celui-ci ne pouvait pas être produit à l'époque. Ces effets conduisirent Gerard 't Hooft et Martinus Veltman à prédire en 1994 une masse du quark top comprise entre 145 et 185 GeV (ce qui leur valut en partie le prix Nobel de physique en 1999). Le quark top fut directement observé par les expériences CDF en 1994 puis DØ en 1995, au Tevatron (Fermilab) ; les collisions proton-antiproton à une énergie de 1,8 TeV qui ont lieu dans cet accélérateur permettent une production de milliers de quark top par an. Il a ensuite été observé au LHC (CERN) en 2010. Le LHC et le Tevatron sont les deux seuls endroits sur terre où cette particule a pu être observée. Le processus de production dominant produit le quark top en compagnie de son antiparticule, lesquels se désintègrent immédiatement en quarks b et bosons W.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (13)
PHYS-741: Gauge Theories and the Standard Model
The goal of this course is to explain the conceptual and mathematical bases of the Standard Model of fundamental interactions and to illustrate in detail its phenomenological consequences.
PHYS-416: Particle physics II
Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the
PHYS-415: Particle physics I
Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.
Afficher plus
Publications associées (479)
Concepts associés (26)
Boson de Higgs
thumb|De gauche à droite : Kibble, Guralnik, Hagen, Englert et Brout, en 2010. Le boson de Higgs ou boson BEH, est une particule élémentaire dont l'existence, postulée indépendamment en juin 1964 par François Englert et Robert Brout, par Peter Higgs, en août, et par Gerald Guralnik, Carl Richard Hagen et Thomas Kibble, permet d'expliquer la brisure de l'interaction unifiée électrofaible (EWSB, pour l'anglais ) en deux interactions par l'intermédiaire du mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble et d'expliquer ainsi pourquoi certaines particules ont une masse et d'autres n'en ont pas.
Grand collisionneur de hadrons
vignette|Tunnel du LHC avec le tube contenant les électroaimants supraconducteurs. Le Grand collisionneur de hadrons (en anglais : Large Hadron Collider — LHC), est un accélérateur de particules mis en fonction en 2008 au CERN et situé dans la région frontalière entre la France et la Suisse entre la périphérie nord-ouest de Genève et le pays de Gex (France). C'est le plus puissant accélérateur de particules construit à ce jour, a fortiori depuis son amélioration achevée en 2015 après deux ans de mise à l'arrêt.
Saveur (physique)
La saveur, en physique des particules, est une caractéristique permettant de distinguer différents types de leptons et de quarks, deux sous-familles des fermions. Les leptons se déclinent en trois saveurs et les quarks en six saveurs. Les saveurs permettent de distinguer certaines classes de particules dont les autres propriétés (charge électrique, interactivité) sont similaires. Les dénominations des saveurs ont été introduites par Murray Gell-Mann, baptisant le quark étrange lors de la détection du kaon en 1964.
Afficher plus
MOOCs associés (8)
Global Arctic
The Global Arctic MOOC introduces you the dynamics between global changes and changes in the Arctic. This course aims to highlight the effects of climate change in the Polar region. In turn, it will u
Smart Cities, Management of Smart Urban Infrastructures
Learn about the principles of management of urban infrastructures in the era of Smart Cities. The introduction of Smart urban technologies into legacy infrastructures has already resulted and will con
Smart Cities, Management of Smart Urban Infrastructures
Learn about the principles of management of urban infrastructures in the era of Smart Cities. The introduction of Smart urban technologies into legacy infrastructures has already resulted and will con
Afficher plus