In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector by a positive real number multiplies the magnitude of the vector—without changing its direction. The term "scalar" itself derives from this usage: a scalar is that which scales vectors. Scalar multiplication is the multiplication of a vector by a scalar (where the product is a vector), and is to be distinguished from inner product of two vectors (where the product is a scalar). In general, if K is a field and V is a vector space over K, then scalar multiplication is a function from K × V to V. The result of applying this function to k in K and v in V is denoted kv. Scalar multiplication obeys the following rules (vector in boldface): Additivity in the scalar: (c + d)v = cv + dv; Additivity in the vector: c(v + w) = cv + cw; Compatibility of product of scalars with scalar multiplication: (cd)v = c(dv); Multiplying by 1 does not change a vector: 1v = v; Multiplying by 0 gives the zero vector: 0v = 0; Multiplying by −1 gives the additive inverse: (−1)v = −v. Here, + is addition either in the field or in the vector space, as appropriate; and 0 is the additive identity in either. Juxtaposition indicates either scalar multiplication or the multiplication operation in the field. Scalar multiplication may be viewed as an external binary operation or as an action of the field on the vector space. A geometric interpretation of scalar multiplication is that it stretches or contracts vectors by a constant factor. As a result, it produces a vector in the same or opposite direction of the original vector but of a different length. As a special case, V may be taken to be K itself and scalar multiplication may then be taken to be simply the multiplication in the field. When V is Kn, scalar multiplication is equivalent to multiplication of each component with the scalar, and may be defined as such.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-111(pi): Linear algebra (flipped classroom)
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications. Cette classe pilote est donné sous forme inversée.
MATH-189: Mathematics
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
Show more
Related publications (35)
Related concepts (18)
Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication.
Scalar (mathematics)
A scalar is an element of a field which is used to define a vector space. In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector. Generally speaking, a vector space may be defined by using any field instead of real numbers (such as complex numbers).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.