In astronomy, magnitude is measure of the brightness of an object, usually in a defined passband. An imprecise but systematic determination of the magnitude of objects was introduced in ancient times by Hipparchus.
Magnitude values do not have a unit. The scale is logarithmic and defined such that a magnitude 1 star is exactly 100 times brighter than a magnitude 6 star. Thus each step of one magnitude is times brighter than the magnitude 1 higher. The brighter an object appears, the lower the value of its magnitude, with the brightest objects reaching negative values.
Astronomers use two different definitions of magnitude: apparent magnitude and absolute magnitude. The apparent magnitude (m) is the brightness of an object and depends on an object's intrinsic luminosity, its distance, and the extinction reducing its brightness. The absolute magnitude (M) describes the intrinsic luminosity emitted by an object and is defined to be equal to the apparent magnitude that the object would have if it were placed at a certain distance 10 parsecs for stars. A more complex definition of absolute magnitude is used for planets and small Solar System bodies, based on its brightness at one astronomical unit from the observer and the Sun.
The Sun has an apparent magnitude of −27 and Sirius, the brightest visible star in the night sky, −1.46. Venus at its brightest is -5. The International Space Station (ISS) sometimes reaches a magnitude of −6.
Amateur astronomers commonly express the darkness of the sky in terms of limiting magnitude, i.e. the apparent magnitude of the faintest star they can see with the naked eye. At a dark site it usual for people to see stars of 6th magnitude or fainter.
Apparent magnitude is really a measure of illuminance, which can also be measured in photometric units such as lux.
The Greek astronomer Hipparchus produced a catalogue which noted the apparent brightness of stars in the second century BCE. In the second century CE the Alexandrian astronomer Ptolemy classified stars on a six-point scale, and originated the term magnitude.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The distance modulus is a way of expressing distances that is often used in astronomy. It describes distances on a logarithmic scale based on the astronomical magnitude system. The distance modulus is the difference between the apparent magnitude (ideally, corrected from the effects of interstellar absorption) and the absolute magnitude of an astronomical object.
Photometry, from Greek photo- ("light") and -metry ("measure"), is a technique used in astronomy that is concerned with measuring the flux or intensity of light radiated by astronomical objects. This light is measured through a telescope using a photometer, often made using electronic devices such as a CCD photometer or a photoelectric photometer that converts light into an electric current by the photoelectric effect. When calibrated against standard stars (or other light sources) of known intensity and colour, photometers can measure the brightness or apparent magnitude of celestial objects.
The Milky Way is the galaxy that includes the Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. The term Milky Way is a translation of the Latin via lactea, from the Greek γαλακτικὸς κύκλος (galaktikòs kýklos), meaning "milky circle". From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within.
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
An efficient characterization of scientifically significant locations is essential prior to the return of humans to the Moon. The highest resolution imagery acquired from orbit of south-polar shadowed regions and other relevant locations remains, at best, ...
Pergamon-Elsevier Science Ltd2024
The shapes of galaxies, their outer regions in particular, are important guideposts to their formation and evolution. In this work, we report on the discovery of strongly box-shaped morphologies of the otherwise well-studied elliptical and lenticular galax ...
Les Ulis Cedex A2024
Context. Gaia DR3 has offered the scientific community a remarkable dataset of approximately one million spectra acquired with the radial velocity spectrometer (RVS) in the calcium II triplet region, which is well suited to identify very metal-poor (VMP) s ...