Irrational numberIn mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being incommensurable, meaning that they share no "measure" in common, that is, there is no length ("the measure"), no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself.
Algebraic equationIn mathematics, an algebraic equation or polynomial equation is an equation of the form where P is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term algebraic equation refers only to univariate equations, that is polynomial equations that involve only one variable. On the other hand, a polynomial equation may involve several variables. In the case of several variables (the multivariate case), the term polynomial equation is usually preferred to algebraic equation.
Conic sectionA conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties. The conic sections in the Euclidean plane have various distinguishing properties, many of which can be used as alternative definitions.
DiscriminantIn mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry. The discriminant of the quadratic polynomial is the quantity which appears under the square root in the quadratic formula.
Golden ratioIn mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with , where the Greek letter phi ( or ) denotes the golden ratio. The constant satisfies the quadratic equation and is an irrational number with a value of The golden ratio was called the extreme and mean ratio by Euclid, and the divine proportion by Luca Pacioli, and also goes by several other names.
Negative numberIn mathematics, a negative number represents an opposite. In the real number system, a negative number is a number that is less than zero. Negative numbers are often used to represent the magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset. If a quantity, such as the charge on an electron, may have either of two opposite senses, then one may choose to distinguish between those senses—perhaps arbitrarily—as positive and negative.
Gerolamo CardanoGerolamo Cardano (dʒeˈrɔːlamo karˈdaːno; also Girolamo or Geronimo; Jérôme Cardan; Hieronymus Cardanus; 24 September 1501– 21 September 1576) was an Italian polymath whose interests and proficiencies ranged through those of mathematician, physician, biologist, physicist, chemist, astrologer, astronomer, philosopher, writer, and gambler. He became one of the most influential mathematicians of the Renaissance and one of the key figures in the foundation of probability; he introduced the binomial coefficients and the binomial theorem in the Western world.
Completing the squareIn elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form to the form for some values of h and k. In other words, completing the square places a perfect square trinomial inside of a quadratic expression. Completing the square is used in solving quadratic equations, deriving the quadratic formula, graphing quadratic functions, evaluating integrals in calculus, such as Gaussian integrals with a linear term in the exponent, finding Laplace transforms.
Indeterminate equationIn mathematics, particularly in algebra, an indeterminate equation is an equation for which there is more than one solution. For example, the equation is a simple indeterminate equation, as is . Indeterminate equations cannot be solved uniquely. In fact, in some cases it might even have infinitely many solutions. Some of the prominent examples of indeterminate equations include: Univariate polynomial equation: which has multiple solutions for the variable in the complex plane—unless it can be rewritten in the form .
Equation solvingIn mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign. When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of values to the unknown variables that makes the equality in the equation true. In other words, a solution is a value or a collection of values (one for each unknown) such that, when substituted for the unknowns, the equation becomes an equality.