Improper integralIn mathematical analysis, an improper integral is an extension of the notion of a definite integral to cases that violate the usual assumptions for that kind of integral. In the context of Riemann integrals (or, equivalently, Darboux integrals), this typically involves unboundedness, either of the set over which the integral is taken or of the integrand (the function being integrated), or both. It may also involve bounded but not closed sets or bounded but not continuous functions.
Dominated convergence theoremIn measure theory, Lebesgue's dominated convergence theorem provides sufficient conditions under which almost everywhere convergence of a sequence of functions implies convergence in the L1 norm. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration. In addition to its frequent appearance in mathematical analysis and partial differential equations, it is widely used in probability theory, since it gives a sufficient condition for the convergence of expected values of random variables.
Bochner integralIn mathematics, the Bochner integral, named for Salomon Bochner, extends the definition of Lebesgue integral to functions that take values in a Banach space, as the limit of integrals of simple functions. Let be a measure space, and be a Banach space. The Bochner integral of a function is defined in much the same way as the Lebesgue integral. First, define a simple function to be any finite sum of the form where the are disjoint members of the -algebra the are distinct elements of and χE is the characteristic function of If is finite whenever then the simple function is integrable, and the integral is then defined by exactly as it is for the ordinary Lebesgue integral.
Henri LebesgueHenri Léon Lebesgue (ɑ̃ʁi leɔ̃ ləbɛɡ; June 28, 1875 – July 26, 1941) was a French mathematician known for his theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an axis and the curve of a function defined for that axis. His theory was published originally in his dissertation Intégrale, longueur, aire ("Integral, length, area") at the University of Nancy during 1902. Henri Lebesgue was born on 28 June 1875 in Beauvais, Oise.
Non-measurable setIn mathematics, a non-measurable set is a set which cannot be assigned a meaningful "volume". The mathematical existence of such sets is construed to provide information about the notions of length, area and volume in formal set theory. In Zermelo–Fraenkel set theory, the axiom of choice entails that non-measurable subsets of exist. The notion of a non-measurable set has been a source of great controversy since its introduction. Historically, this led Borel and Kolmogorov to formulate probability theory on sets which are constrained to be measurable.
Dirichlet functionIn mathematics, the Dirichlet function is the indicator function 1Q or of the set of rational numbers Q, i.e. 1Q(x) = 1 if x is a rational number and 1Q(x) = 0 if x is not a rational number (i.e. an irrational number). It is named after the mathematician Peter Gustav Lejeune Dirichlet. It is an example of pathological function which provides counterexamples to many situations. The Dirichlet function is nowhere continuous. Its restrictions to the set of rational numbers and to the set of irrational numbers are constants and therefore continuous.
Darboux integralIn the branch of mathematics known as real analysis, the Darboux integral is constructed using Darboux sums and is one possible definition of the integral of a function. Darboux integrals are equivalent to Riemann integrals, meaning that a function is Darboux-integrable if and only if it is Riemann-integrable, and the values of the two integrals, if they exist, are equal. The definition of the Darboux integral has the advantage of being easier to apply in computations or proofs than that of the Riemann integral.
Dirac measureIn mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element x or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields. A Dirac measure is a measure δx on a set X (with any σ-algebra of subsets of X) defined for a given x ∈ X and any (measurable) set A ⊆ X by where 1A is the indicator function of A. The Dirac measure is a probability measure, and in terms of probability it represents the almost sure outcome x in the sample space X.
Sinc functionIn mathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized. In mathematics, the historical unnormalized sinc function is defined for x ≠ 0 by Alternatively, the unnormalized sinc function is often called the sampling function, indicated as Sa(x). In digital signal processing and information theory, the normalized sinc function is commonly defined for x ≠ 0 by In either case, the value at x = 0 is defined to be the limiting value for all real a ≠ 0 (the limit can be proven using the squeeze theorem).
Signed measureIn mathematics, signed measure is a generalization of the concept of (positive) measure by allowing the set function to take negative values. There are two slightly different concepts of a signed measure, depending on whether or not one allows it to take infinite values. Signed measures are usually only allowed to take finite real values, while some textbooks allow them to take infinite values. To avoid confusion, this article will call these two cases "finite signed measures" and "extended signed measures".