In algebraic geometry, an irreducible algebraic set or irreducible variety is an algebraic set that cannot be written as the union of two proper algebraic subsets. An irreducible component is an algebraic subset that is irreducible and maximal (for set inclusion) for this property. For example, the set of solutions of the equation xy = 0 is not irreducible, and its irreducible components are the two lines of equations x = 0 and y =0. It is a fundamental theorem of classical algebraic geometry that every algebraic set may be written in a unique way as a finite union of irreducible components. These concepts can be reformulated in purely topological terms, using the Zariski topology, for which the closed sets are the algebraic subsets: A topological space is irreducible if it is not the union of two proper closed subsets, and an irreducible component is a maximal subspace (necessarily closed) that is irreducible for the induced topology. Although these concepts may be considered for every topological space, this is rarely done outside algebraic geometry, since most common topological spaces are Hausdorff spaces, and, in a Hausdorff space, the irreducible components are the singletons. A topological space X is reducible if it can be written as a union of two closed proper subsets , of A topological space is irreducible (or hyperconnected) if it is not reducible. Equivalently, X is irreducible if all non empty open subsets of X are dense, or if any two nonempty open sets have nonempty intersection. A subset F of a topological space X is called irreducible or reducible, if F considered as a topological space via the subspace topology has the corresponding property in the above sense. That is, is reducible if it can be written as a union where are closed subsets of , neither of which contains An irreducible component of a topological space is a maximal irreducible subset. If a subset is irreducible, its closure is also irreducible, so irreducible components are closed.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
MATH-215: Algebra III - rings and fields
C'est un cours introductoire dans la théorie d'anneau et de corps.
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-328: Algebraic geometry I - Curves
Algebraic geometry is the common language for many branches of modern research in mathematics. This course gives an introduction to this field by studying algebraic curves and their intersection theor

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.