The red clump is a clustering of red giants in the Hertzsprung–Russell diagram at around 5,000 K and absolute magnitude (MV) +0.5, slightly hotter than most red-giant-branch stars of the same luminosity. It is visible as a denser region of the red-giant branch or a bulge towards hotter temperatures. It is prominent in many galactic open clusters, and it is also noticeable in many intermediate-age globular clusters and in nearby field stars (e.g. the Hipparcos stars).
The red clump giants are cool horizontal branch stars, stars originally similar to the Sun which have undergone a helium flash and are now fusing helium in their cores.
Red clump stellar properties vary depending on their origin, most notably on the metallicity of the stars, but typically they have early K spectral types and effective temperatures around 5,000 K. The absolute visual magnitude of red clump giants near the sun has been measured at an average of +0.81 with metallicities between −0.6 and +0.4 dex.
There is a considerable spread in the properties of red clump stars even within a single population of similar stars such as an open cluster. This is partly due to the natural variation in temperatures and luminosities of horizontal branch stars when they form and as they evolve, and partly due to the presence of other stars with similar properties. Although red clump stars are generally hotter than red-giant-branch stars, the two regions overlap and the status of individual stars can only be assigned with a detailed chemical abundance study.
Horizontal branch
Modelling of the horizontal branch has shown that stars have a strong tendency to cluster at the cool end of the zero age horizontal branch (ZAHB). This tendency is weaker in low metallicity stars, so the red clump is usually more prominent in metal-rich clusters. However, there are other effects, and there are well-populated red clumps in some metal-poor globular clusters.
Stars with a similar mass to the sun evolve towards the tip of the red-giant branch with a degenerate helium core.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around or lower. The appearance of the red giant is from yellow-white to reddish-orange, including the spectral types K and M, sometimes G, but also class S stars and most carbon stars.
A subgiant is a star that is brighter than a normal main-sequence star of the same spectral class, but not as bright as giant stars. The term subgiant is applied both to a particular spectral luminosity class and to a stage in the evolution of a star. The term subgiant was first used in 1930 for class G and early K stars with absolute magnitudes between +2.5 and +4. These were noted as being part of a continuum of stars between obvious main-sequence stars such as the Sun and obvious giant stars such as Aldebaran, although less numerous than either the main sequence or the giant stars.
A giant star is a star with substantially larger radius and luminosity than a main-sequence (or dwarf) star of the same surface temperature. They lie above the main sequence (luminosity class V in the Yerkes spectral classification) on the Hertzsprung–Russell diagram and correspond to luminosity classes II and III. The terms giant and dwarf were coined for stars of quite different luminosity despite similar temperature or spectral type by Ejnar Hertzsprung about 1905.
Explores the fundamental problem of distance in astronomy and discusses various methods for distance measurement, including wide-angle astrometry and detached eclipsing binary distances.
Explores the origin of radionuclides from supernova explosions and their role in nature, covering topics such as nuclear astrophysics, cosmic element formation, and stellar evolution.
The radial metallicity distribution of the Milky Way's disc is an important observational constraint for models of the formation and evolution of our Galaxy. It informs our understanding of the chemical enrichment of the Galactic disc and the dynamical pro ...
The tip of the red giant branch (TRGB) is an important standard candle for determining luminosity distances. Although several 105 small-amplitude red giant stars (SARGs) have been discovered, variability was previously considered irrelevant for the TRGB as ...
Bristol2024
The tip of the red giant branch provides a luminous standard candle for calibrating distance ladders that reach Type Ia supernova (SN Ia) hosts. However, recent work reveals that tip measurements vary at the similar to 0.1 mag level for different stellar p ...