Functional programmingIn computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local identifiers), passed as arguments, and returned from other functions, just as any other data type can.
Control flowIn computer science, control flow (or flow of control) is the order in which individual statements, instructions or function calls of an imperative program are executed or evaluated. The emphasis on explicit control flow distinguishes an imperative programming language from a declarative programming language. Within an imperative programming language, a control flow statement is a statement that results in a choice being made as to which of two or more paths to follow.
Scala (programming language)Scala (ˈskɑːlə ) is a strong statically typed high-level general-purpose programming language that supports both object-oriented programming and functional programming. Designed to be concise, many of Scala's design decisions are aimed to address criticisms of Java. Scala source code can be compiled to Java bytecode and run on a Java virtual machine (JVM). Scala can also be compiled to JavaScript to run in a browser, or directly to a native executable.
Julia (programming language)Julia is a high-level, general-purpose dynamic programming language. Its features are well suited for numerical analysis and computational science. Distinctive aspects of Julia's design include a type system with parametric polymorphism in a dynamic programming language; with multiple dispatch as its core programming paradigm. Julia supports concurrent, (composable) parallel and distributed computing (with or without using MPI or the built-in corresponding to "OpenMP-style" threads), and direct calling of C and Fortran libraries without glue code.
Lambda calculusLambda calculus (also written as λ-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. Lambda calculus consists of constructing lambda terms and performing reduction operations on them.
Interpreter (computing)In computer science, an interpreter is a computer program that directly executes instructions written in a programming or scripting language, without requiring them previously to have been compiled into a machine language program. An interpreter generally uses one of the following strategies for program execution: Parse the source code and perform its behavior directly; Translate source code into some efficient intermediate representation or object code and immediately execute that; Explicitly execute stored precompiled bytecode made by a compiler and matched with the interpreter Virtual Machine.
Common LispCommon Lisp (CL) is a dialect of the Lisp programming language, published in American National Standards Institute (ANSI) standard document ANSI INCITS 226-1994 (S20018) (formerly X3.226-1994 (R1999)). The Common Lisp HyperSpec, a hyperlinked HTML version, has been derived from the ANSI Common Lisp standard. The Common Lisp language was developed as a standardized and improved successor of Maclisp. By the early 1980s several groups were already at work on diverse successors to MacLisp: Lisp Machine Lisp (aka ZetaLisp), Spice Lisp, NIL and S-1 Lisp.
Mutual recursionIn mathematics and computer science, mutual recursion is a form of recursion where two mathematical or computational objects, such as functions or datatypes, are defined in terms of each other. Mutual recursion is very common in functional programming and in some problem domains, such as recursive descent parsers, where the datatypes are naturally mutually recursive. The most important basic example of a datatype that can be defined by mutual recursion is a tree, which can be defined mutually recursively in terms of a forest (a list of trees).
Procedural programmingProcedural programming is a programming paradigm, derived from imperative programming, based on the concept of the procedure call. Procedures (a type of routine or subroutine) simply contain a series of computational steps to be carried out. Any given procedure might be called at any point during a program's execution, including by other procedures or itself. The first major procedural programming languages appeared circa 1957–1964, including Fortran, ALGOL, COBOL, PL/I and BASIC. Pascal and C were published circa 1970–1972.
Racket (programming language)Racket is a general-purpose, multi-paradigm programming language and a multi-platform distribution that includes the Racket language, compiler, large standard library, IDE, development tools, and a set of additional languages including Typed Racket (a sister language of Racket with a static type-checker), Swindle, FrTime, Lazy Racket, R5RS & R6RS Scheme, Scribble, Datalog, Racklog, Algol 60 and several teaching languages. The Racket language is a modern dialect of Lisp and a descendant of Scheme.