Algebra homomorphismIn mathematics, an algebra homomorphism is a homomorphism between two algebras. More precisely, if A and B are algebras over a field (or a ring) K, it is a function such that, for all k in K and x, y in A, one has The first two conditions say that F is a K-linear map, and the last condition says that F preserves the algebra multiplication. So, if the algebras are associative, F is a rng homomorphism, and, if the algebras are rings and F preserves the identity, it is a ring homomorphism.
Prime powerIn mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: 7 = 7^1, 9 = 3^2 and 64 = 2^6 are prime powers, while 6 = 2 × 3, 12 = 2^2 × 3 and 36 = 6^2 = 2^2 × 3^2 are not. The sequence of prime powers begins: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, .
Hensel's lemmaIn mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number p, then this root can be lifted to a unique root modulo any higher power of p. More generally, if a polynomial factors modulo p into two coprime polynomials, this factorization can be lifted to a factorization modulo any higher power of p (the case of roots corresponds to the case of degree 1 for one of the factors).