En algèbre, un espace vectoriel est symplectique quand on le munit d'une forme symplectique, c'est-à-dire une forme bilinéaire alternée et non dégénérée. L'étude de ces espaces vectoriels présente quelques ressemblances avec l'étude des espaces préhilbertiens réels puisqu'on y définit également la notion d'orthogonalité. Mais il y a de fortes différences, ne serait-ce que parce que tout vecteur est orthogonal à lui-même.
Les espaces vectoriels symplectiques servent de modèles pour définir les variétés symplectiques, étudiées en géométrie symplectique. Ces dernières sont le cadre naturel de la mécanique hamiltonienne.
Un espace vectoriel préhilbertien complexe est automatiquement muni d'une structure symplectique en tant qu'espace vectoriel réel. En termes de variétés, l'analogue est la notion de variété kählérienne.
Soit un espace vectoriel sur le corps des réels (le cas général sera présenté ci-dessous). Une forme symplectique sur est une forme bilinéaire alternée et non dégénérée , i.e. :
on a le caractère alterné
qui est parfois remplacé par l'antisymétrie: (ces deux propriétés sont équivalentes) ;
et la non-dégénérescence: .
Un espace vectoriel symplectique est un espace vectoriel muni d'une forme symplectique .
Deux vecteurs sont dits (symplectiquement) orthogonaux lorsque . Par caractère alterné de , tout vecteur de est orthogonal à lui-même.
Proposition : Tout espace vectoriel symplectique de dimension finie est de dimension réelle paire.
L'espace vectoriel symplectique de référence est l'espace où, en base canonique , la forme symplectique vérifie les relations
La représentation matricielle de la forme symplectique standard est alors :
où désigne la matrice identité de taille .
Il y a en quelque sorte des directions couplées : chaque est orthogonal à tous les vecteurs de base sauf .
Une variante du procédé d'orthonormalisation de Gram-Schmidt permet de montrer que tout espace vectoriel symplectique de dimension finie possède une telle base, à laquelle on donne en général le nom de base de Darboux.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématique, une matrice symplectique est une matrice M de taille 2n par 2n (dont les entrées sont typiquement soit des réels soit des complexes) satisfaisant la condition où MT désigne la matrice transposée de M et J est la matrice par blocs antisymétrique définie par : (In étant la matrice identité n×n). On remarque que le déterminant de J vaut 1 et qu'on a l'identité J = −I2n. Toute matrice symplectique est inversible et son inverse est donnée par : De plus, le produit de deux matrices symplectiques est, à nouveau, une matrice symplectique.
En mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
En géométrie différentielle, la forme de Liouville est une 1-forme différentielle naturelle sur le fibré cotangent d'une variété différentielle. Sa dérivée extérieure est une forme symplectique. Elle joue un rôle central en mécanique classique. L'étude de la géométrie du fibré cotangent revêt une importance significative en géométrie symplectique en raison, notamment, du théorème de Weinstein. Si M est une variété différentielle de dimension n, désigne l'espace total du fibré cotangent de M et peut être regardé comme une variété différentielle de dimension 2n.
Accelerator physics covers a wide range of very exciting topics. This course presents basic physics ideas and the technologies underlying the workings of modern accelerators. An overview of the new id
This course provides an introduction to the modeling of matter at the atomic scale, using interactive jupyter notebooks to see several of the core concepts of materials science in action.
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
This paper develops a fast algorithm for computing the equilibrium assignment with the perturbed utility route choice (PURC) model. Without compromise, this allows the significant advantages of the PURC model to be used in large-scale applications. We form ...
We study the symplectic Howe duality using two new and independent combinatorial methods: via determinantal formulae on the one hand, and via (bi)crystals on the other hand. The first approach allows us to establish a generalised version where weight multi ...
2022
,
Among the single-trajectory Gaussian-based methods for solving the time-dependent Schrödinger equation, the variational Gaussian approximation is the most accurate one. In contrast to Heller’s original thawed Gaussian approximation, it is symplectic, conse ...