Summary
Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics. Verma modules can be used in the classification of irreducible representations of a complex semisimple Lie algebra. Specifically, although Verma modules themselves are infinite dimensional, quotients of them can be used to construct finite-dimensional representations with highest weight , where is dominant and integral. Their homomorphisms correspond to invariant differential operators over flag manifolds. We can explain the idea of a Verma module as follows. Let be a semisimple Lie algebra (over , for simplicity). Let be a fixed Cartan subalgebra of and let be the associated root system. Let be a fixed set of positive roots. For each , choose a nonzero element for the corresponding root space and a nonzero element in the root space . We think of the 's as "raising operators" and the 's as "lowering operators." Now let be an arbitrary linear functional, not necessarily dominant or integral. Our goal is to construct a representation of with highest weight that is generated by a single nonzero vector with weight . The Verma module is one particular such highest-weight module, one that is maximal in the sense that every other highest-weight module with highest weight is a quotient of the Verma module. It will turn out that Verma modules are always infinite dimensional; if is dominant integral, however, one can construct a finite-dimensional quotient module of the Verma module. Thus, Verma modules play an important role in the classification of finite-dimensional representations of . Specifically, they are an important tool in the hard part of the theorem of the highest weight, namely showing that every dominant integral element actually arises as the highest weight of a finite-dimensional irreducible representation of . We now attempt to understand intuitively what the Verma module with highest weight should look like.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.