In mathematics, the adjoint representation (or adjoint action) of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: . For any Lie group, this natural representation is obtained by linearizing (i.e. taking the differential of) the action of G on itself by conjugation. The adjoint representation can be defined for linear algebraic groups over arbitrary fields. Representation theory and Lie group#The Lie algebra associated with a Lie group Let G be a Lie group, and let be the mapping g ↦ Ψg, with Aut(G) the automorphism group of G and Ψg: G → G given by the inner automorphism (conjugation) This Ψ is a Lie group homomorphism. For each g in G, define Adg to be the derivative of Ψg at the origin: where d is the differential and is the tangent space at the origin e (e being the identity element of the group G). Since is a Lie group automorphism, Adg is a Lie algebra automorphism; i.e., an invertible linear transformation of to itself that preserves the Lie bracket. Moreover, since is a group homomorphism, too is a group homomorphism. Hence, the map is a group representation called the adjoint representation of G. If G is an immersed Lie subgroup of the general linear group (called immersely linear Lie group), then the Lie algebra consists of matrices and the exponential map is the matrix exponential for matrices X with small operator norms. Thus, for g in G and small X in , taking the derivative of at t = 0, one gets: where on the right we have the products of matrices. If is a closed subgroup (that is, G is a matrix Lie group), then this formula is valid for all g in G and all X in . Succinctly, an adjoint representation is an isotropy representation associated to the conjugation action of G around the identity element of G.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.