Résumé
In mathematics, the adjoint representation (or adjoint action) of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: . For any Lie group, this natural representation is obtained by linearizing (i.e. taking the differential of) the action of G on itself by conjugation. The adjoint representation can be defined for linear algebraic groups over arbitrary fields. Representation theory and Lie group#The Lie algebra associated with a Lie group Let G be a Lie group, and let be the mapping g ↦ Ψg, with Aut(G) the automorphism group of G and Ψg: G → G given by the inner automorphism (conjugation) This Ψ is a Lie group homomorphism. For each g in G, define Adg to be the derivative of Ψg at the origin: where d is the differential and is the tangent space at the origin e (e being the identity element of the group G). Since is a Lie group automorphism, Adg is a Lie algebra automorphism; i.e., an invertible linear transformation of to itself that preserves the Lie bracket. Moreover, since is a group homomorphism, too is a group homomorphism. Hence, the map is a group representation called the adjoint representation of G. If G is an immersed Lie subgroup of the general linear group (called immersely linear Lie group), then the Lie algebra consists of matrices and the exponential map is the matrix exponential for matrices X with small operator norms. Thus, for g in G and small X in , taking the derivative of at t = 0, one gets: where on the right we have the products of matrices. If is a closed subgroup (that is, G is a matrix Lie group), then this formula is valid for all g in G and all X in . Succinctly, an adjoint representation is an isotropy representation associated to the conjugation action of G around the identity element of G.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (20)
Théorie des représentations
La théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Représentation adjointe
En mathématiques, il existe deux notions de représentations adjointes : la représentation adjointe d'un groupe de Lie sur son algèbre de Lie, la représentation adjointe d'une algèbre de Lie sur elle-même. Alors que la première est une représentation de groupe, la seconde est une représentation d'algèbre. Soient : un groupe de Lie ; l'élément identité de ; l'algèbre de Lie de ; l'automorphisme intérieur de sur lui-même, donné par .
Semisimple Lie algebra
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra , if nonzero, the following conditions are equivalent: is semisimple; the Killing form, κ(x,y) = tr(ad(x)ad(y)), is non-degenerate; has no non-zero abelian ideals; has no non-zero solvable ideals; the radical (maximal solvable ideal) of is zero.
Afficher plus
Cours associés (5)
MATH-334: Representation theory
Study the basics of representation theory of groups and associative algebras.
PHYS-431: Quantum field theory I
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
Afficher plus
Séances de cours associées (68)
Kirillov Paradigm pour le groupe Heisenberg
Explore le paradigme Kirillov pour le groupe Heisenberg et les représentations unitaires.
Résultats centraux dans les formes hermites
Couvre les résultats centraux dans les formes hermites et les principales représentations de séries dans la théorie de groupe.
Modélisation Introduction
Explore l'importance de la modélisation pour comprendre et contrôler efficacement les systèmes complexes.
Afficher plus