Concept

Tate conjecture

Summary
In number theory and algebraic geometry, the Tate conjecture is a 1963 conjecture of John Tate that would describe the algebraic cycles on a variety in terms of a more computable invariant, the Galois representation on étale cohomology. The conjecture is a central problem in the theory of algebraic cycles. It can be considered an arithmetic analog of the Hodge conjecture. Let V be a smooth projective variety over a field k which is finitely generated over its prime field. Let ks be a separable closure of k, and let G be the absolute Galois group Gal(ks/k) of k. Fix a prime number l which is invertible in k. Consider the l-adic cohomology groups (coefficients in the l-adic integers Zl, scalars then extended to the l-adic numbers Ql) of the base extension of V to ks; these groups are representations of G. For any i ≥ 0, a codimension-i subvariety of V (understood to be defined over k) determines an element of the cohomology group which is fixed by G. Here Ql(i ) denotes the ith Tate twist, which means that this representation of the Galois group G is tensored with the ith power of the cyclotomic character. The Tate conjecture states that the subspace WG of W fixed by the Galois group G is spanned, as a Ql-vector space, by the classes of codimension-i subvarieties of V. An algebraic cycle means a finite linear combination of subvarieties; so an equivalent statement is that every element of WG is the class of an algebraic cycle on V with Ql coefficients. The Tate conjecture for divisors (algebraic cycles of codimension 1) is a major open problem. For example, let f : X → C be a morphism from a smooth projective surface onto a smooth projective curve over a finite field. Suppose that the generic fiber F of f, which is a curve over the function field k(C), is smooth over k(C). Then the Tate conjecture for divisors on X is equivalent to the Birch and Swinnerton-Dyer conjecture for the Jacobian variety of F. By contrast, the Hodge conjecture for divisors on any smooth complex projective variety is known (the Lefschetz (1,1)-theorem).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.