Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We provide new explicit examples of lattice sphere packings in dimensions 54, 55, 162, 163, 486 and 487 that are the densest known so far, using Kummer families of elliptic curves over global function fields.In some cases, these families of elliptic curves ...
We study the elliptic curves given by y(2) = x(3) + bx + t(3n+1) over global function fields of characteristic 3 ; in particular we perform an explicit computation of the L-function by relating it to the zeta function of a certain superelliptic curve u(3) ...
Classical Serre-Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multipl ...
Fix a prime number l. Graphs of isogenies of degree a power of l are well-understood for elliptic curves, but not for higher-dimensional abelian varieties. We study the case of absolutely simple ordinary abelian varieties over a finite field. We analyse gr ...
We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varietie ...
We show that Brauer classes of a locally solvable degree 4 del Pezzo surface X are vertical for some projection away from a plane g : X -> P-1, i.e., that every Brauer class is obtained by pullback from an element of Br k(P-1). As a consequence, we prove t ...
The aim of this work is to solve parametrized partial differential equations in computational domains represented by networks of repetitive geometries by combining reduced basis and domain decomposition techniques. The main idea behind this approach is to ...
Let k be an algebraically closed field of characteristic p > 0. We give a birational characterization of ordinary abelian varieties over k: a smooth projective variety X is birational to an ordinary abelian variety if and only if kappa(S)(X) = 0 and b(1)(X ...