Geometric invariant theoryIn mathematics, geometric invariant theory (or GIT) is a method for constructing quotients by group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas from the paper in classical invariant theory. Geometric invariant theory studies an action of a group G on an algebraic variety (or scheme) X and provides techniques for forming the 'quotient' of X by G as a scheme with reasonable properties.
Teichmüller spaceIn mathematics, the Teichmüller space of a (real) topological (or differential) surface , is a space that parametrizes complex structures on up to the action of homeomorphisms that are isotopic to the identity homeomorphism. Teichmüller spaces are named after Oswald Teichmüller. Each point in a Teichmüller space may be regarded as an isomorphism class of "marked" Riemann surfaces, where a "marking" is an isotopy class of homeomorphisms from to itself.
Canonical ringIn mathematics, the pluricanonical ring of an algebraic variety V (which is nonsingular), or of a complex manifold, is the graded ring of sections of powers of the canonical bundle K. Its nth graded component (for ) is: that is, the space of sections of the n-th tensor product Kn of the canonical bundle K. The 0th graded component is sections of the trivial bundle, and is one-dimensional as V is projective. The projective variety defined by this graded ring is called the canonical model of V, and the dimension of the canonical model is called the Kodaira dimension of V.
ProjectivizationIn mathematics, projectivization is a procedure which associates with a non-zero vector space V a projective space , whose elements are one-dimensional subspaces of V. More generally, any subset S of V closed under scalar multiplication defines a subset of formed by the lines contained in S and is called the projectivization of S. Projectivization is a special case of the factorization by a group action: the projective space is the quotient of the open set V{0} of nonzero vectors by the action of the multiplicative group of the base field by scalar transformations.
Genus–degree formulaIn classical algebraic geometry, the genus–degree formula relates the degree d of an irreducible plane curve with its arithmetic genus g via the formula: Here "plane curve" means that is a closed curve in the projective plane . If the curve is non-singular the geometric genus and the arithmetic genus are equal, but if the curve is singular, with only ordinary singularities, the geometric genus is smaller. More precisely, an ordinary singularity of multiplicity r decreases the genus by .
Chow varietyIn mathematics, particularly in the field of algebraic geometry, a Chow variety is an algebraic variety whose points correspond to effective algebraic cycles of fixed dimension and degree on a given projective space. More precisely, the Chow variety is the fine moduli variety parametrizing all effective algebraic cycles of dimension and degree in . The Chow variety may be constructed via a Chow embedding into a sufficiently large projective space.
Torelli theoremIn mathematics, the Torelli theorem, named after Ruggiero Torelli, is a classical result of algebraic geometry over the complex number field, stating that a non-singular projective algebraic curve (compact Riemann surface) C is determined by its Jacobian variety J(C), when the latter is given in the form of a principally polarized abelian variety. In other words, the complex torus J(C), with certain 'markings', is enough to recover C. The same statement holds over any algebraically closed field.
Weighted projective spaceIn algebraic geometry, a weighted projective space P(a0,...,an) is the projective variety Proj(k[x0,...,xn]) associated to the graded ring k[x0,...,xn] where the variable xk has degree ak. If d is a positive integer then P(a0,a1,...,an) is isomorphic to P(da0,da1,...,dan). This is a property of the Proj construction; geometrically it corresponds to the d-tuple Veronese embedding. So without loss of generality one may assume that the degrees ai have no common factor. Suppose that a0,a1,...
Algebraic torusIn mathematics, an algebraic torus, where a one dimensional torus is typically denoted by , , or , is a type of commutative affine algebraic group commonly found in projective algebraic geometry and toric geometry. Higher dimensional algebraic tori can be modelled as a product of algebraic groups . These groups were named by analogy with the theory of tori in Lie group theory (see Cartan subgroup). For example, over the complex numbers the algebraic torus is isomorphic to the group scheme , which is the scheme theoretic analogue of the Lie group .
CodimensionIn mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties. For affine and projective algebraic varieties, the codimension equals the height of the defining ideal. For this reason, the height of an ideal is often called its codimension. The dual concept is relative dimension. Codimension is a relative concept: it is only defined for one object inside another.