Summary
In geometry, a solid of revolution is a solid figure obtained by rotating a plane figure around some straight line (the axis of revolution), which may not intersect the generatrix (except at its boundary). The surface created by this revolution and which bounds the solid is the surface of revolution. Assuming that the curve does not cross the axis, the solid's volume is equal to the length of the circle described by the figure's centroid multiplied by the figure's area (Pappus's second centroid theorem). A representative disc is a three-dimensional volume element of a solid of revolution. The element is created by rotating a line segment (of length w) around some axis (located r units away), so that a cylindrical volume of πr2w units is enclosed. Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration. To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then find the limiting sum of these volumes as δx approaches 0, a value which may be found by evaluating a suitable integral. A more rigorous justification can be given by attempting to evaluate a triple integral in cylindrical coordinates with two different orders of integration. Disc integration The disc method is used when the slice that was drawn is perpendicular to the axis of revolution; i.e. when integrating parallel to the axis of revolution. The volume of the solid formed by rotating the area between the curves of f(y) and g(y) and the lines y = a and y = b about the y-axis is given by If g(y) = 0 (e.g. revolving an area between the curve and the y-axis), this reduces to: The method can be visualized by considering a thin horizontal rectangle at y between f(y) on top and g(y) on the bottom, and revolving it about the y-axis; it forms a ring (or disc in the case that g(y) = 0), with outer radius f(y) and inner radius g(y).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (8)
MATH-189: Mathematics
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
PHYS-101(en): General physics : mechanics (English)
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
ME-280: Fluid mechanics (for GM)
Basic lecture in fluid mechanics
Show more
Related publications (18)
Related concepts (7)
Surface of revolution
A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) one full revolution around an axis of rotation (normally not intersecting the generatrix, except at its endpoints). The volume bounded by the surface created by this revolution is the solid of revolution. Examples of surfaces of revolution generated by a straight line are cylindrical and conical surfaces depending on whether or not the line is parallel to the axis.
Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.
Parametric equation
In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, called parametric curve and parametric surface, respectively. In such cases, the equations are collectively called a parametric representation, or parametric system, or parameterization (alternatively spelled as parametrisation) of the object.
Show more