Résumé
In geometry, a solid of revolution is a solid figure obtained by rotating a plane figure around some straight line (the axis of revolution), which may not intersect the generatrix (except at its boundary). The surface created by this revolution and which bounds the solid is the surface of revolution. Assuming that the curve does not cross the axis, the solid's volume is equal to the length of the circle described by the figure's centroid multiplied by the figure's area (Pappus's second centroid theorem). A representative disc is a three-dimensional volume element of a solid of revolution. The element is created by rotating a line segment (of length w) around some axis (located r units away), so that a cylindrical volume of πr2w units is enclosed. Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration. To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then find the limiting sum of these volumes as δx approaches 0, a value which may be found by evaluating a suitable integral. A more rigorous justification can be given by attempting to evaluate a triple integral in cylindrical coordinates with two different orders of integration. Disc integration The disc method is used when the slice that was drawn is perpendicular to the axis of revolution; i.e. when integrating parallel to the axis of revolution. The volume of the solid formed by rotating the area between the curves of f(y) and g(y) and the lines y = a and y = b about the y-axis is given by If g(y) = 0 (e.g. revolving an area between the curve and the y-axis), this reduces to: The method can be visualized by considering a thin horizontal rectangle at y between f(y) on top and g(y) on the bottom, and revolving it about the y-axis; it forms a ring (or disc in the case that g(y) = 0), with outer radius f(y) and inner radius g(y).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (8)
MATH-189: Mathematics
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
PHYS-101(en): General physics : mechanics (English)
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
ME-280: Fluid mechanics (for GM)
Basic lecture in fluid mechanics
Afficher plus
Publications associées (18)
Concepts associés (7)
Surface de révolution
En mathématiques, une surface de révolution est une surface de R, invariante par rotation autour d'un axe fixe. Une surface balayée par la rotation d'une courbe quelconque autour d'un axe fixe est une surface de révolution. Son intersection avec un plan contenant l'axe s'appelle une méridienne. Son intersection avec un plan perpendiculaire à l'axe est formée de cercles appelés parallèles. Les surfaces de révolution comprennent les sphères, les tores, cylindre de révolution, ellipsoïde de révolution et hyperboloïdes de révolution, les ovoïdes, etc.
Géométrie
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Parametric equation
In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, called parametric curve and parametric surface, respectively. In such cases, the equations are collectively called a parametric representation, or parametric system, or parameterization (alternatively spelled as parametrisation) of the object.
Afficher plus