An ingot is a piece of relatively pure material, usually metal, that is cast into a shape suitable for further processing. In steelmaking, it is the first step among semi-finished casting products. Ingots usually require a second procedure of shaping, such as cold/hot working, cutting, or milling to produce a useful final product. Non-metallic and semiconductor materials prepared in bulk form may also be referred to as ingots, particularly when cast by mold based methods. Precious metal ingots can be used as currency (with or without being processed into other shapes), or as a currency reserve, as with gold bars.
Ingots are generally made of metal, either pure or alloy, heated past its melting point and cast into a bar or block using a mold chill method.
A special case are polycrystalline or single crystal ingots made by pulling from a molten melt.
Boule (crystal)
Single crystal ingots (called boules) of materials are grown (crystal growth) using methods such as the Czochralski process or Bridgeman technique.
The boules may be either semiconductor (e.g. electronic chip wafers, photovoltaic cells) or non-conducting inorganic compounds for industrial and jewelry use (e.g., synthetic ruby, sapphire).
Single crystal ingots of metal are produced in similar fashion to that used to produce high purity semiconductor ingots, i.e. by vacuum induction refining. Single crystal ingots of engineering metals are of interest due to their very high strength due to lack of grain boundaries. The method of production is via single crystal dendrite and not via simple casting. Possible uses include turbine blades.
In the United States, the brass and bronze ingot making industry started in the early 19th century. The US brass industry grew to be the number one producer by the 1850s. During colonial times the brass and bronze industries were almost non-existent because the British demanded all copper ore be sent to Britain for processing. Copper based alloy ingots weighed approximately .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as solar panels.
Polycrystalline silicon, or multicrystalline silicon, also called polysilicon, poly-Si, or mc-Si, is a high purity, polycrystalline form of silicon, used as a raw material by the solar photovoltaic and electronics industry. Polysilicon is produced from metallurgical grade silicon by a chemical purification process, called the Siemens process. This process involves distillation of volatile silicon compounds, and their decomposition into silicon at high temperatures. An emerging, alternative process of refinement uses a fluidized bed reactor.
In metallurgy, non-ferrous metals are metals or alloys that do not contain iron (allotropes of iron, ferrite, and so on) in appreciable amounts. Generally more costly than ferrous metals, non-ferrous metals are used because of desirable properties such as low weight (e.g. aluminium), higher conductivity (e.g. copper), non-magnetic properties or resistance to corrosion (e.g. zinc). Some non-ferrous materials are also used in the iron and steel industries.
Explores the fundamentals and processes for photovoltaic devices, including impurities in polysilicon, ingot growth methods, wire sawing, and the impact of cracks on wafer strength.
Explores the preparation of silicon material and wafers for photovoltaic applications, covering topics such as the crystalline silicon standard chain and alternative wafering techniques.
Explores silicon and wafer preparation for photovoltaics, focusing on reducing costs and environmental impact through improved efficiency and manufacturing processes.
Many industrial processes are based on electrochemical reactions using engineered electrocatalysts. However, the current lack of theoretical knowledge obscures efforts to maximize catalysts' efficiency, and the optimization process is mostly empirical. To ...
Electrochemical reduction of CO(2) to value-added chemicals and fuels is a promising strategy to sustain pressing renewable energy demands and to address climate change issues. Direct observation of reaction intermediates during the CO(2) reduction reactio ...
This is the first account of the history of modelling dendritic and cellular solidification. While Part I reviewed the progress up to the year 2000 [Kurz W, Fisher DJ, Trivedi R. Progress in modelling solidification microstructures in metals and alloys: de ...