In optics, a ray is an idealized geometrical model of light or other electromagnetic radiation, obtained by choosing a curve that is perpendicular to the wavefronts of the actual light, and that points in the direction of energy flow. Rays are used to model the propagation of light through an optical system, by dividing the real light field up into discrete rays that can be computationally propagated through the system by the techniques of ray tracing. This allows even very complex optical systems to be analyzed mathematically or simulated by computer. Ray tracing uses approximate solutions to Maxwell's equations that are valid as long as the light waves propagate through and around objects whose dimensions are much greater than the light's wavelength. Ray optics or geometrical optics does not describe phenomena such as diffraction, which require wave optics theory. Some wave phenomena such as interference can be modeled in limited circumstances by adding phase to the ray model.
A light ray is a line (straight or curved) that is perpendicular to the light's wavefronts; its tangent is collinear with the wave vector. Light rays in homogeneous media are straight. They bend at the interface between two dissimilar media and may be curved in a medium in which the refractive index changes. Geometric optics describes how rays propagate through an optical system. Objects to be imaged are treated as collections of independent point sources, each producing spherical wavefronts and corresponding outward rays. Rays from each object point can be mathematically propagated to locate the corresponding point on the image.
A slightly more rigorous definition of a light ray follows from Fermat's principle, which states that the path taken between two points by a ray of light is the path that can be traversed in the least time.
There are many special rays that are used in optical modelling to analyze an optical system. These are defined and described below, grouped by the type of system they are used to model.
An is a ray of light that strikes a surface.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction to geometrical and wave optics for understanding the principles of optical microscopes, their advantages and limitations. Describing the basic microscopy components and the commonly used
L'optique est un vieux domaine qui touche à beaucoup de sujets modernes, des techniques expérimentales aux applications courantes. Ce premier cours traite plusieurs aspects de base de l'optique: propa
In physics, the wavefront of a time-varying wave field is the set (locus) of all points having the same phase. The term is generally meaningful only for fields that, at each point, vary sinusoidally in time with a single temporal frequency (otherwise the phase is not well defined). Wavefronts usually move with time. For waves propagating in a unidimensional medium, the wavefronts are usually single points; they are curves in a two dimensional medium, and surfaces in a three-dimensional one.
In physics, physical optics, or wave optics, is the branch of optics that studies interference, diffraction, polarization, and other phenomena for which the ray approximation of geometric optics is not valid. This usage tends not to include effects such as quantum noise in optical communication, which is studied in the sub-branch of coherence theory. Physical optics is also the name of an approximation commonly used in optics, electrical engineering and applied physics.
In geometric optics, the paraxial approximation is a small-angle approximation used in Gaussian optics and ray tracing of light through an optical system (such as a lens). A paraxial ray is a ray which makes a small angle (θ) to the optical axis of the system, and lies close to the axis throughout the system. Generally, this allows three important approximations (for θ in radians) for calculation of the ray's path, namely: The paraxial approximation is used in Gaussian optics and first-order ray tracing.
Covers the basics of optical tweezers and their applications in microscopy, manipulation, and spectroscopy, as well as the alignment of molecules using laser pulses.
The technique referred as ray approximation treats wave propagation in a heterogeneous medium at the infinitely small wavelength limit. This classic simplification allows useful approximate analytical results to be obtained in cases where complete descript ...
We propose NEMTO, the first end-to-end neural render- ing pipeline to model 3D transparent objects with complex geometry and unknown indices of refraction. Commonly used appearance modeling such as the Disney BSDF model cannot accurately address this chall ...
IEEE/CVF International Conference on Computer Vision (ICCV)2023
Coherent field propagation is an essential computational tool in optics with applications ranging from computational optics and optical design to iterative field reconstructions. An improvement in the computational speed of current propagation methods is t ...