Summary
A regulator gene, regulator, or regulatory gene is a gene involved in controlling the expression of one or more other genes. Regulatory sequences, which encode regulatory genes, are often at the five prime end (5') to the start site of transcription of the gene they regulate. In addition, these sequences can also be found at the three prime end (3') to the transcription start site. In both cases, whether the regulatory sequence occurs before (5') or after (3') the gene it regulates, the sequence is often many kilobases away from the transcription start site. A regulator gene may encode a protein, or it may work at the level of RNA, as in the case of genes encoding microRNAs. An example of a regulator gene is a gene that codes for a repressor protein that inhibits the activity of an operator (a gene which binds repressor proteins thus inhibiting the translation of RNA to protein via RNA polymerase). In prokaryotes, regulator genes often code for repressor proteins. Repressor proteins bind to operators or promoters, preventing RNA polymerase from transcribing RNA. They are usually constantly expressed so the cell always has a supply of repressor molecules on hand. Inducers cause repressor proteins to change shape or otherwise become unable to bind DNA, allowing RNA polymerase to continue transcription. Regulator genes can be located within an operon, adjacent to it, or far away from it. Other regulatory genes code for activator proteins. An activator binds to a site on the DNA molecule and causes an increase in transcription of a nearby gene. In prokaryotes, a well-known activator protein is the catabolite activator protein (CAP), involved in positive control of the lac operon. In the regulation of gene expression, studied in evolutionary developmental biology (evo-devo), both activators and repressors play important roles. Regulatory genes can also be described as positive or negative regulators, based on the environmental conditions that surround the cell.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood