Related concepts (31)
Regular chain
In mathematics, and more specifically in computer algebra and elimination theory, a regular chain is a particular kind of triangular set of multivariate polynomials over a field, where a triangular set is a finite sequence of polynomials such that each one contains at least one more indeterminate than the preceding one. The condition that a triangular set must satisfy to be a regular chain is that, for every k, every common zero (in an algebraically closed field) of the k first polynomials may be prolongated to a common zero of the (k + 1)th polynomial.
Lexicographic order
In mathematics, the lexicographic or lexicographical order (also known as lexical order, or dictionary order) is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of a totally ordered set. There are several variants and generalizations of the lexicographical ordering. One variant applies to sequences of different lengths by comparing the lengths of the sequences before considering their elements.
Parametric equation
In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, called parametric curve and parametric surface, respectively. In such cases, the equations are collectively called a parametric representation, or parametric system, or parameterization (alternatively spelled as parametrisation) of the object.
Monomial basis
In mathematics the monomial basis of a polynomial ring is its basis (as a vector space or free module over the field or ring of coefficients) that consists of all monomials. The monomials form a basis because every polynomial may be uniquely written as a finite linear combination of monomials (this is an immediate consequence of the definition of a polynomial). The polynomial ring K[x] of univariate polynomials over a field K is a K-vector space, which has as an (infinite) basis.
Homogeneous coordinate ring
In algebraic geometry, the homogeneous coordinate ring R of an algebraic variety V given as a subvariety of projective space of a given dimension N is by definition the quotient ring R = K[X0, X1, X2, ..., XN] / I where I is the homogeneous ideal defining V, K is the algebraically closed field over which V is defined, and K[X0, X1, X2, ..., XN] is the polynomial ring in N + 1 variables Xi. The polynomial ring is therefore the homogeneous coordinate ring of the projective space itself, and the variables are the homogeneous coordinates, for a given choice of basis (in the vector space underlying the projective space).
Primitive part and content
In algebra, the content of a nonzero polynomial with integer coefficients (or, more generally, with coefficients in a unique factorization domain) is the greatest common divisor of its coefficients. The primitive part of such a polynomial is the quotient of the polynomial by its content. Thus a polynomial is the product of its primitive part and its content, and this factorization is unique up to the multiplication of the content by a unit of the ring of the coefficients (and the multiplication of the primitive part by the inverse of the unit).
Standard basis
In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as or ) is the set of vectors, each of whose components are all zero, except one that equals 1. For example, in the case of the Euclidean plane formed by the pairs (x, y) of real numbers, the standard basis is formed by the vectors Similarly, the standard basis for the three-dimensional space is formed by vectors Here the vector ex points in the x direction, the vector ey points in the y direction, and the vector ez points in the z direction.
Degree of an algebraic variety
In mathematics, the degree of an affine or projective variety of dimension n is the number of intersection points of the variety with n hyperplanes in general position. For an algebraic set, the intersection points must be counted with their intersection multiplicity, because of the possibility of multiple components. For (irreducible) varieties, if one takes into account the multiplicities and, in the affine case, the points at infinity, the hypothesis of general position may be replaced by the much weaker condition that the intersection of the variety has the dimension zero (that is, consists of a finite number of points).
Chinese remainder theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). For example, if we know that the remainder of n divided by 3 is 2, the remainder of n divided by 5 is 3, and the remainder of n divided by 7 is 2, then without knowing the value of n, we can determine that the remainder of n divided by 105 (the product of 3, 5, and 7) is 23.
Irreducible component
In algebraic geometry, an irreducible algebraic set or irreducible variety is an algebraic set that cannot be written as the union of two proper algebraic subsets. An irreducible component is an algebraic subset that is irreducible and maximal (for set inclusion) for this property. For example, the set of solutions of the equation xy = 0 is not irreducible, and its irreducible components are the two lines of equations x = 0 and y =0.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.