Concept

Tensor product of algebras

Summary
In mathematics, the tensor product of two algebras over a commutative ring R is also an R-algebra. This gives the tensor product of algebras. When the ring is a field, the most common application of such products is to describe the product of algebra representations. Let R be a commutative ring and let A and B be R-algebras. Since A and B may both be regarded as R-modules, their tensor product is also an R-module. The tensor product can be given the structure of a ring by defining the product on elements of the form a ⊗ b by and then extending by linearity to all of A ⊗R B. This ring is an R-algebra, associative and unital with identity element given by 1A ⊗ 1B. where 1A and 1B are the identity elements of A and B. If A and B are commutative, then the tensor product is commutative as well. The tensor product turns the of R-algebras into a . There are natural homomorphisms from A and B to A ⊗R B given by These maps make the tensor product the coproduct in the . The tensor product is not the coproduct in the category of all R-algebras. There the coproduct is given by a more general free product of algebras. Nevertheless, the tensor product of non-commutative algebras can be described by a universal property similar to that of the coproduct: where [-, -] denotes the commutator. The natural isomorphism is given by identifying a morphism on the left hand side with the pair of morphisms on the right hand side where and similarly . The tensor product of commutative algebras is of frequent use in algebraic geometry. For affine schemes X, Y, Z with morphisms from X and Z to Y, so X = Spec(A), Y = Spec(R), and Z = Spec(B) for some commutative rings A, R, B, the fiber product scheme is the affine scheme corresponding to the tensor product of algebras: More generally, the fiber product of schemes is defined by gluing together affine fiber products of this form. tensor product of modules#Examples The tensor product can be used as a means of taking intersections of two subschemes in a scheme: consider the -algebras , , then their tensor product is , which describes the intersection of the algebraic curves f = 0 and g = 0 in the affine plane over C.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.