In electronics, a Schmitt trigger is a comparator circuit with hysteresis implemented by applying positive feedback to the noninverting input of a comparator or differential amplifier. It is an active circuit which converts an analog input signal to a digital output signal. The circuit is named a trigger because the output retains its value until the input changes sufficiently to trigger a change. In the non-inverting configuration, when the input is higher than a chosen threshold, the output is high. When the input is below a different (lower) chosen threshold the output is low, and when the input is between the two levels the output retains its value. This dual threshold action is called hysteresis and implies that the Schmitt trigger possesses memory and can act as a bistable multivibrator (latch or flip-flop). There is a close relation between the two kinds of circuits: a Schmitt trigger can be converted into a latch and a latch can be converted into a Schmitt trigger.
Schmitt trigger devices are typically used in signal conditioning applications to remove noise from signals used in digital circuits, particularly mechanical contact bounce in switches. They are also used in closed loop negative feedback configurations to implement relaxation oscillators, used in function generators and switching power supplies.
In signal theory, a schmitt trigger is essentially a one-bit quantizer.
The Schmitt trigger was invented by American scientist Otto H. Schmitt in 1934 while he was a graduate student, later described in his doctoral dissertation (1937) as a thermionic trigger. It was a direct result of Schmitt's study of the neural impulse propagation in squid nerves.
Circuits with hysteresis are based on positive feedback. Any active circuit can be made to behave as a Schmitt trigger by applying a positive feedback so that the loop gain is more than one. The positive feedback is introduced by adding a part of the output voltage to the input voltage.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Maîtriser des blocs fonctionnels nécessitant un plus haut niveau d'abstraction. Réalisation de fonctions électroniques de haut niveau exploitant les amplificateurs opérationnels.
Les concepts de base permettant de comprendre, d'analyser et de concevoir les circuits à base d'AmpliOp, dédiés à l'acquisition et conditionnement des signaux analogiques sont traités en théorie et pr
Les concepts de base permettant de comprendre et d'analyser les systèmes électroniques dédiés à l'acquisition et au traitement des signaux (signaux physiologique, bio-capteurs) seront abordés en théor
In electronics, flip-flops and latches are circuits that have two stable states that can store state information – a bistable multivibrator. The circuit can be made to change state by signals applied to one or more control inputs and will output its state (often along with its logical complement too). It is the basic storage element in sequential logic. Flip-flops and latches are fundamental building blocks of digital electronics systems used in computers, communications, and many other types of systems.
In a dynamical system, bistability means the system has two stable equilibrium states. A bistable structure can be resting in either of two states. An example of a mechanical device which is bistable is a light switch. The switch lever is designed to rest in the "on" or "off" position, but not between the two. Bistable behavior can occur in mechanical linkages, electronic circuits, nonlinear optical systems, chemical reactions, and physiological and biological systems.
A multivibrator is an electronic circuit used to implement a variety of simple two-state devices such as relaxation oscillators, timers, latches and flip-flops. The first multivibrator circuit, the astable multivibrator oscillator, was invented by Henri Abraham and Eugene Bloch during World War I. It consisted of two vacuum tube amplifiers cross-coupled by a resistor-capacitor network. They called their circuit a "multivibrator" because its output waveform was rich in harmonics.
The increasing luminosity in HEP (High Energy Physics) colliders demands trigger systems to be more selective. First, more information from the detector is routed to the trigger system. Second, larger parts of this information are processed together. These ...
We provide a theoretical description of dynamical heterogeneities in glass-forming liquids, based on the premise that relaxation occurs via local rearrangements coupled by elasticity. In our framework, the growth of the dynamical correlation length e and o ...
Multi-channel GaN power device, consisting of stacking multiple two-dimensional-electron-gas (2DEG) channels, has been demonstrated to achieve unprecedented on-state performance while maintaining high breakdown voltage (VBR). However, the large carrier den ...