The nitrite ion has the chemical formula NO2-. Nitrite (mostly sodium nitrite) is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name nitrite also refers to organic compounds having the –ONO group, which are esters of nitrous acid.
Sodium nitrite is made industrially by passing a mixture of nitrogen oxides into aqueous sodium hydroxide or sodium carbonate solution:
The product is purified by recrystallization. Alkali metal nitrites are thermally stable up to and beyond their melting point (441 °C for KNO2). Ammonium nitrite can be made from dinitrogen trioxide, N2O3, which is formally the anhydride of nitrous acid:
2 NH3 + H2O + N2O3 → 2 NH4NO2
The nitrite ion has a symmetrical structure (C2v symmetry), with both N–O bonds having equal length and a bond angle of about 115°. In valence bond theory, it is described as a resonance hybrid with equal contributions from two canonical forms that are mirror images of each other. In molecular orbital theory, there is a sigma bond between each oxygen atom and the nitrogen atom, and a delocalized pi bond made from the p orbitals on nitrogen and oxygen atoms which is perpendicular to the plane of the molecule. The negative charge of the ion is equally distributed on the two oxygen atoms. Both nitrogen and oxygen atoms carry a lone pair of electrons. Therefore, the nitrite ion is a Lewis base.
In the gas phase it exists predominantly as a trans-planar molecule.
Nitrite is the conjugate base of the weak acid nitrous acid:
HNO2 H+ + NO2-; pKa ≈ 3.3 at 18 °C
Nitrous acid is also highly volatile, tending to disproportionate:
3 HNO2 (aq) H3O+ + NO3- + 2 NO
This reaction is slow at 0 °C. Addition of acid to a solution of a nitrite in the presence of a reducing agent, such as iron(II), is a way to make nitric oxide (NO) in the laboratory.
The formal oxidation state of the nitrogen atom in nitrite is +3. This means that it can be either oxidized to oxidation states +4 and +5, or reduced to oxidation states as low as −3.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
This course builds on environmental chemistry and microbiology taken in previous courses. The emphasis is on quantification using the public domain package, PHREEQC, which is an excellent computation
Covers coordination numbers, common ligands, and preferred geometries in coordination chemistry, emphasizing the spatial distribution between ligands and the role of d⁸ electron configurations.
Nitrous acid (molecular formula HNO2) is a weak and monoprotic acid known only in solution, in the gas phase and in the form of nitrite (NO-2) salts. Nitrous acid is used to make diazonium salts from amines. The resulting diazonium salts are reagents in azo coupling reactions to give azo dyes. In the gas phase, the planar nitrous acid molecule can adopt both a syn and an anti form. The anti form predominates at room temperature, and IR measurements indicate it is more stable by around 2.3 kJ/mol.
Bacteria (bækˈtɪəriə; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere.
The ammonium cation is a positively charged polyatomic ion with the chemical formula or . It is formed by the protonation of ammonia (). Ammonium is also a general name for positively charged (protonated) substituted amines and quaternary ammonium cations (), where one or more hydrogen atoms are replaced by organic or other groups (indicated by R). The ammonium ion is generated when ammonia, a weak base, reacts with Brønsted acids (proton donors): The ammonium ion is mildly acidic, reacting with Brønsted bases to return to the uncharged ammonia molecule: Thus, the treatment of concentrated solutions of ammonium salts with a strong base gives ammonia.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Aerosols formed and grown by gas-to-particle processes are a major contributor to smog and haze in megacities, despite the competition between growth and loss rates. Rapid growth rates from ammonium nitrate formation have the potential to sustain particle ...
Autotrophic nitrate-reducing Fe(II)-oxidizing (NRFeOx) microorganisms fix CO2 and oxidize Fe(II) coupled to denitrification, influencing carbon, iron, and nitrogen cycles in pH-neutral, anoxic environments. However, the distribution of electrons from Fe(II ...
AMER SOC MICROBIOLOGY2023
Satellite-based retrievals of tropospheric NO(2)columns are widely used to infer NOx (equivalent to NO + NO2) emissions. These retrievals rely on model information for the vertical distribution of NO2. The free tropospheric background above 2 km is particu ...