In mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four.
Given a real vector bundle E over M, its k-th Pontryagin class is defined as
where:
denotes the -th Chern class of the complexification of E,
is the -cohomology group of M with integer coefficients.
The rational Pontryagin class is defined to be the image of in , the -cohomology group of M with rational coefficients.
The total Pontryagin class
is (modulo 2-torsion) multiplicative with respect to
Whitney sum of vector bundles, i.e.,
for two vector bundles E and F over M. In terms of the individual Pontryagin classes pk,
and so on.
The vanishing of the Pontryagin classes and Stiefel–Whitney classes of a vector bundle does not guarantee that the vector bundle is trivial. For example, up to vector bundle isomorphism, there is a unique nontrivial rank 10 vector bundle over the 9-sphere. (The clutching function for arises from the homotopy group .) The Pontryagin classes and Stiefel-Whitney classes all vanish: the Pontryagin classes don't exist in degree 9, and the Stiefel–Whitney class w9 of E10 vanishes by the Wu formula w9 = w1w8 + Sq1(w8). Moreover, this vector bundle is stably nontrivial, i.e. the Whitney sum of E10 with any trivial bundle remains nontrivial.
Given a 2k-dimensional vector bundle E we have
where e(E) denotes the Euler class of E, and denotes the cup product of cohomology classes.
As was shown by Shiing-Shen Chern and André Weil around 1948, the rational Pontryagin classes
can be presented as differential forms which depend polynomially on the curvature form of a vector bundle. This Chern–Weil theory revealed a major connection between algebraic topology and global differential geometry.
For a vector bundle E over a n-dimensional differentiable manifold M equipped with a connection, the total Pontryagin class is expressed as
where Ω denotes the curvature form, and H*dR(M) denotes the de Rham cohomology groups.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours permet de comprendre le fonctionnement, déterminer les efforts et de dimensionner les structures en treillis, en poutre, en dalle et en cadre. Le cours se base sur la résolution des efforts p
Le cours étudie les concepts fondamentaux de l'analyse complexe et de l'analyse de Laplace en vue de leur utilisation
pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
Le cours présente les bases du comportement des structures, de la détermination des efforts qui y agissent et les principes de leur dimensionnement. Le cours est basé sur la résolution des efforts par
In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index (related to the dimension of the space of solutions) is equal to the topological index (defined in terms of some topological data). It includes many other theorems, such as the Chern–Gauss–Bonnet theorem and Riemann–Roch theorem, as special cases, and has applications to theoretical physics.
In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary (French bord, giving cobordism) of a manifold. Two manifolds of the same dimension are cobordant if their disjoint union is the boundary of a compact manifold one dimension higher. The boundary of an (n + 1)-dimensional manifold W is an n-dimensional manifold ∂W that is closed, i.e., with empty boundary.
In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle of a smooth manifold, it generalizes the classical notion of Euler characteristic. It is named after Leonhard Euler because of this. Throughout this article is an oriented, real vector bundle of rank over a base space . The Euler class is an element of the integral cohomology group constructed as follows.
In the rapidly expanding field of topological materials there is growing interest in systems whose topological electronic band features can be induced or controlled by magnetism. Magnetic Weyl semimetals, which contain linear band crossings near the Fermi ...
Berlin2024
Recent advances on low-dimensional and topological materials has greatly inspired the research in condensed matter physics. This thesis is devoted to the computational and theoretical study of topological effects in two-dimensional materials, especially na ...
Meta-learning is the core capability that enables intelligent systems to rapidly generalize their prior ex-perience to learn new tasks. In general, the optimization-based methods formalize the meta-learning as a bi-level optimization problem, that is a nes ...