**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Towards new invariants for principal bundles

Abstract

We investigate the theory of principal bundles from a homotopical point of view. In the first part of the thesis, we prove a classification of principal bundles over a fixed base space, dual to the well-known classification of bundles with a fixed structure group. This leads to an adjointness property in a homotopical context between the classifying space and the loop space. We then focus on characteristic classes, which are invariants for principal bundles that take values in the cohomology of the base space. Each characteristic class captures different geo- metric features of principal bundles. We propose a uniform treatment to interpret most of known characteristic classes as obstructions to group reduction and to the extension of a universal cocycle. By plugging in the correct parameters, the method recovers several classical theorems. Afterwards, we construct a long exact sequence of abelian groups for any principal bundle. This sequence involves the cohomology of the base space and the group cohomology of the structure group. Moreover the connecting map is deeply related with the characteristic classes of the bundle.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related publications (5)

Loading

Loading

Loading

Related concepts (19)

Abelian group

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are

Classifying space

In mathematics, specifically in homotopy theory, a classifying space BG of a topological group G is the quotient of a weakly contractible space EG (i.e., a topological space all of whose homotopy gro

Cohomology

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined f

Every principal G-bundle over X is classified up to equivalence by a homotopy class X -> BG, where BG is the classifying space of G. On the other hand, for every nice topological space X Milnor constructed a strict model of its loop space (Omega) over tildeX, that is a group. Moreover, the morphisms of topological groups (Omega) over tildeX -> G generate all the G-bundles over X up to equivalence. In this paper, we show that the relation between Milnor's loop space and the classifying space functor is, in a precise sense, an adjoint pair between based spaces and topological groups in a homotopical context. This proof leads to a classification of principal bundles over a fixed space, that is dual to the classification of bundles with a fixed group. Such a result clarifies the deep relation that exists between the theory of bundles, the classifying space construction and the loop space, which are very important in topological K-theory, group cohomology, and homotopy theory.

In the first part of this paper, we propose a uniform interpretation of characteristic classes as obstructions to the reduction of the structure group and to the existence of an equivariant extension of a certain homomorphism defined a priori only on a single fiber of the bundle. Afterwards, we define a family of invariants of principal bundles that detect the number of group reductions that a principal bundle admits. We prove that they fit into a long exact sequence of abelian groups, together with the cohomology of the base space and the cohomology of the classifying space of the structure group.

The Lq,p-cohomology of a Riemannian manifold (M, g) is defined to be the quotient of closed Lp-forms, modulo the exact forms which are derivatives of Lq-forms, where the measure considered comes from the Riemannian structure. The Lq,p-cohomology of a simplicial complex K is defined to be the quotient of p-summable cocycles of K, modulo the coboundaries of q-summable cocycles. We introduce those two notions together with a variant for coarse cohomology on graphs, and we establish their main properties. We define the categories we work on, i.e. manifolds and simplicial complexes of bounded geometry, and we show how cohomology classes can be represented by smooth forms. The first result of the thesis is a de Rham type theorem: we prove that for an orientable, complete and (non compact) Riemannian manifold with bounded geometry (M, g) together with a triangulation K with bounded geometry, the Lq,p-cohomology of the manifold coincides with the Lq,p-cohomology of the triangulation. This is a generalization of an earlier result from Gol'dshtein, Kuz'minov and Shvedov. The second result is a quasi-isometry invariance one: we prove how this de Rham type isomorphism together with a result in coarse cohomology induces the fact that the Lq,p-cohomology of a Riemannian manifold depends only on its quasi-invariance class. This result was proved in the q = p case by Elek. We establish some consequences, such as monocity results for Lq,p-cohomology, and the quasi-isometry invariance of the existence of Sobolev inequalities.