Concept

Algèbre de composition

Résumé
En mathématiques, les algèbres de composition sur un corps commutatif sont des structures algébriques qui généralisent simultanément le corps des nombres complexes, le corps non commutatif des quaternions de Hamilton et l'algèbre des octonions de Cayley. Dans cet article, on note K un corps commutatif (de caractéristique quelconque), et les algèbres ne sont pas supposées être associatives ni – a priori du moins – de dimension finie. Une algèbre de composition sur K est une algèbre A sur K (non nécessairement associative ou pas nécessairement de dimension finie) qui est unitaire telle qu'il existe une forme quadratique q sur l'espace vectoriel sous-jacent à A qui est non dégénérée (c'est-à-dire dont la forme bilinéaire symétrique φ associée à q est non dégénérée), telle que q(1) = 1 et telle que, quels que soient les éléments x et y de A, q(xy) = q(x)q(y), et il existe alors une unique telle forme quadratique q, et, pour tout élément x de A, on note N(x) et on appelle norme de x (à ne pas confondre avec une norme d'algèbre) le scalaire q(x) de K. Quels que soient les éléments x et y de A, on note N(x, y) l'élément φ(x, y) = q(x + y) – q(x) – q(y) de K. Exemples Si K est le corps R des nombres réels, alors le corps R, le corps C des nombres complexes, le corps H des quaternions de Hamilton et l'algèbre O des octonions de Cayley sont des algèbres de composition, où, pour tout élément x de cette algèbre, N(x) est le carré de la norme euclidienne de x. Si la caractéristique de K est différente de 2, K est une algèbre de composition sur K, et pour tout élément x de K, on N(x) = x2. Toute algèbre étale quadratique sur K est une algèbre de composition sur K. En particulier, l'algèbre produit K × K est une algèbre de composition et toute extension quadratique séparable de K est une algèbre de composition (si la caractéristique de K est différente de 2, toute extension quadratique est séparable). Toute algèbre de quaternions sur K est une algèbre de composition sur K. En particulier l'algèbre M2(K) des matrices carrées d'ordre 2 est une algèbre de composition.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.