A Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high-voltage, low-current, high-frequency alternating-current electricity. Tesla experimented with a number of different configurations consisting of two, or sometimes three, coupled resonant electric circuits.
Tesla used these circuits to conduct innovative experiments in electrical lighting, phosphorescence, X-ray generation, high-frequency alternating current phenomena, electrotherapy, and the transmission of electrical energy without wires. Tesla coil circuits were used commercially in spark-gap radio transmitters for wireless telegraphy until the 1920s, and in medical equipment such as electrotherapy and violet ray devices. Today, their main usage is for entertainment and educational displays, although small coils are still used as leak detectors for high-vacuum systems.
Originally, Tesla coils used fixed spark gaps or rotary spark gaps to provide intermittent excitation of the resonant circuit; more recently, electronic devices are used to provide the switching action required.
A Tesla coil is a radio frequency oscillator that drives an air-core double-tuned resonant transformer to produce high voltages at low currents. Tesla's original circuits as well as most modern coils use a simple spark gap to excite oscillations in the tuned transformer. More sophisticated designs use transistor or thyristor switches or vacuum tube electronic oscillators to drive the resonant transformer.
Tesla coils can produce output voltages from 50 kilovolts to several million volts for large coils. The alternating current output is in the low radio frequency range, usually between 50 kHz and 1 MHz. Although some oscillator-driven coils generate a continuous alternating current, most Tesla coils have a pulsed output; the high voltage consists of a rapid string of pulses of radio frequency alternating current.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
Le cours aborde les principales méthodes pour l'analyse de systèmes électromécaniques. Une étude des grandeurs physiques magnétiques est suivie par la conversion de l'énergie électrique en énergie méc
A spark-gap transmitter is an obsolete type of radio transmitter which generates radio waves by means of an electric spark. Spark-gap transmitters were the first type of radio transmitter, and were the main type used during the wireless telegraphy or "spark" era, the first three decades of radio, from 1887 to the end of World War I. German physicist Heinrich Hertz built the first experimental spark-gap transmitters in 1887, with which he proved the existence of radio waves and studied their properties.
In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material (a dielectric), subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All insulating materials undergo breakdown when the electric field caused by an applied voltage exceeds the material's dielectric strength. The voltage at which a given insulating object becomes conductive is called its breakdown voltage and, in addition to its dielectric strength, depends on its size and shape, and the location on the object at which the voltage is applied.
High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, high voltage refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant special safety requirements and procedures. High voltage is used in electrical power distribution, in cathode ray tubes, to generate X-rays and particle beams, to produce electrical arcs, for ignition, in photomultiplier tubes, and in high-power amplifier vacuum tubes, as well as other industrial, military and scientific applications.
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
Découvrez les systèmes alternatifs triphasés et leurs charges associées ainsi que les régimes transitoires, base des alimentations à découpage.
A modular multiple frequency coils inductive link system to wirelessly provide power for at least a medical implant at an output of a receiving coil, whereby the receiving coil is configured to be implanted in an organism. The modular multiple frequency co ...
The magnet feeders are part of the critical systems of a fusion reactor since they represent the interface between the in-cryostat components at 4.5 K and the room-temperature cryogenic plant and power supply. The European DEMO tokamak foresees 16 toroidal ...
The auxiliary power supply for medium voltage converters requires high insulation capability between the source and the load. Inductive power transfer technology, with an air gap between the primary and secondary coil, offers such high insulation capabilit ...