In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material (a dielectric), subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All insulating materials undergo breakdown when the electric field caused by an applied voltage exceeds the material's dielectric strength. The voltage at which a given insulating object becomes conductive is called its breakdown voltage and, in addition to its dielectric strength, depends on its size and shape, and the location on the object at which the voltage is applied. Under sufficient electrical potential, electrical breakdown can occur within solids, liquids, or gases (and theoretically even in a vacuum). However, the specific breakdown mechanisms are different for each kind of dielectric medium.
Electrical breakdown may be a momentary event (as in an electrostatic discharge), or may lead to a continuous electric arc if protective devices fail to interrupt the current in a power circuit. In this case electrical breakdown can cause catastrophic failure of electrical equipment, and fire hazards.
Electric current is a flow of electrically charged particles in a material caused by an electric field, usually created by a voltage difference across the material. The mobile charged particles which make up an electric current are called charge carriers. In different substances different particles serve as charge carriers: in metals and some other solids some of the outer electrons of each atom (conduction electrons) are able to move about in the material; in electrolytes and plasma it is ions, electrically charged atoms or molecules, and electrons that are charge carriers. A material that has a high concentration of charge carriers available for conduction, such as a metal, will conduct a large current with a given electric field, and thus has a low electrical resistivity; this is called an electrical conductor.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This class adresses scaling laws in MEMS/NEMS. The dominant physical effects and scaling effects when downsizing sensors and actuators in microsystems are discussed, across a broad range of actuation
A Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high-voltage, low-current, high-frequency alternating-current electricity. Tesla experimented with a number of different configurations consisting of two, or sometimes three, coupled resonant electric circuits. Tesla used these circuits to conduct innovative experiments in electrical lighting, phosphorescence, X-ray generation, high-frequency alternating current phenomena, electrotherapy, and the transmission of electrical energy without wires.
In electrical engineering, partial discharge (PD) is a localized dielectric breakdown (DB) (which does not completely bridge the space between the two conductors) of a small portion of a solid or fluid electrical insulation (EI) system under high voltage (HV) stress. While a corona discharge (CD) is usually revealed by a relatively steady glow or brush discharge (BD) in air, partial discharges within solid insulation system are not visible. PD can occur in a gaseous, liquid, or solid insulating medium.
A Lichtenberg figure (German Lichtenberg-Figuren), or Lichtenberg dust figure, is a branching electric discharge that sometimes appears on the surface or in the interior of insulating materials. Lichtenberg figures are often associated with the progressive deterioration of high voltage components and equipment. The study of planar Lichtenberg figures along insulating surfaces and 3D electrical trees within insulating materials often provides engineers with valuable insights for improving the long-term reliability of high-voltage equipment.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Explores the failure mechanisms in MEMS devices, including creep, fatigue, and electrical failures, and discusses mitigation strategies.
, , , , , ,
We present a single-photon avalanche diode (SPAD) developed in 55 nm bipolar-CMOS-DMOS (BCD) technology, which achieves high photon detection probability (PDP) while its breakdown voltage is lower than 20 V. To enhance the PDP performance, the SPAD junctio ...
In this work, we present a concept that leverages the strong piezoelectric polarization field in InGaN, which counteracts the external electric field at reverse bias. We show that despite the smaller InGaN band-gap and lower critical electric field, its st ...
2024
, , , , , ,
Dielectric Elastomer Actuators (DEAs) are a type of smart material described as compliant capacitors. They show impressive performances as soft actuators, such as a high strain and fast response. Nonetheless, replicating natural muscle function with DEAs h ...
Society of Photo-Optical Instrumentation Engineers (SPIE)2024