IntransitivityIn mathematics, intransitivity (sometimes called nontransitivity) is a property of binary relations that are not transitive relations. This may include any relation that is not transitive, or the stronger property of antitransitivity, which describes a relation that is never transitive. A relation is transitive if, whenever it relates some A to some B, and that B to some C, it also relates that A to that C.
Dense orderIn mathematics, a partial order or total order < on a set is said to be dense if, for all and in for which , there is a in such that . That is, for any two elements, one less than the other, there is another element between them. For total orders this can be simplified to "for any two distinct elements, there is another element between them", since all elements of a total order are comparable. The rational numbers as a linearly ordered set are a densely ordered set in this sense, as are the algebraic numbers, the real numbers, the dyadic rationals and the decimal fractions.
Upper and lower boundsIn mathematics, particularly in order theory, an upper bound or majorant of a subset S of some preordered set (K, ≤) is an element of K that is greater than or equal to every element of S. Dually, a lower bound or minorant of S is defined to be an element of K that is less than or equal to every element of S. A set with an upper (respectively, lower) bound is said to be bounded from above or majorized (respectively bounded from below or minorized) by that bound.
Covering relationIn mathematics, especially order theory, the covering relation of a partially ordered set is the binary relation which holds between comparable elements that are immediate neighbours. The covering relation is commonly used to graphically express the partial order by means of the Hasse diagram. Let be a set with a partial order . As usual, let be the relation on such that if and only if and . Let and be elements of . Then covers , written , if and there is no element such that .
Reflexive closureIn mathematics, the reflexive closure of a binary relation on a set is the smallest reflexive relation on that contains A relation is called if it relates every element of to itself. For example, if is a set of distinct numbers and means " is less than ", then the reflexive closure of is the relation " is less than or equal to ". The reflexive closure of a relation on a set is given by In plain English, the reflexive closure of is the union of with the identity relation on As an example, if then the relation is already reflexive by itself, so it does not differ from its reflexive closure.
Semigroup with involutionIn mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse.
Range of a functionIn mathematics, the range of a function may refer to either of two closely related concepts: The codomain of the function The of the function Given two sets X and Y, a binary relation f between X and Y is a (total) function (from X to Y) if for every x in X there is exactly one y in Y such that f relates x to y. The sets X and Y are called domain and codomain of f, respectively. The image of f is then the subset of Y consisting of only those elements y of Y such that there is at least one x in X with f(x) = y.
Law of trichotomyIn mathematics, the law of trichotomy states that every real number is either positive, negative, or zero. More generally, a binary relation R on a set X is trichotomous if for all x and y in X, exactly one of xRy, yRx and x = y holds. Writing R as
ComparabilityIn mathematics, two elements x and y of a set P are said to be comparable with respect to a binary relation ≤ if at least one of x ≤ y or y ≤ x is true. They are called incomparable if they are not comparable. A binary relation on a set is by definition any subset of Given is written if and only if in which case is said to be to by An element is said to be , or (), to an element if or Often, a symbol indicating comparison, such as (or and many others) is used instead of in which case is written in place of which is why the term "comparable" is used.
Transitive reductionIn the mathematical field of graph theory, a transitive reduction of a directed graph D is another directed graph with the same vertices and as few edges as possible, such that for all pairs of vertices v, w a (directed) path from v to w in D exists if and only if such a path exists in the reduction. Transitive reductions were introduced by , who provided tight bounds on the computational complexity of constructing them. More technically, the reduction is a directed graph that has the same reachability relation as D.