IntransitivityIn mathematics, intransitivity (sometimes called nontransitivity) is a property of binary relations that are not transitive relations. This may include any relation that is not transitive, or the stronger property of antitransitivity, which describes a relation that is never transitive. A relation is transitive if, whenever it relates some A to some B, and that B to some C, it also relates that A to that C.
Ordre denseLa notion dordre dense est une notion de mathématiques, en lien avec la notion de relation d'ordre. Un ensemble ordonné (E, ≤) est dit dense en lui-même, ou plus simplement dense, si, pour tout couple (x, y) d'éléments de E tels que x < y il existe un élément z de E tel que x < z < y. Par exemple, tout corps totalement ordonné est dense en lui-même alors que l'anneau Z des entiers relatifs ne l'est pas.
Majorant ou minorantEn mathématiques, soient (E , ≤) un ensemble ordonné et F une partie de E ; un élément x de E est : un majorant de F s'il est supérieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F : ; un minorant de F s'il est inférieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F :. Si F possède un majorant x alors on dit que F est une partie majorée. Si F possède un minorant x alors on dit que F est une partie minorée.
Covering relationIn mathematics, especially order theory, the covering relation of a partially ordered set is the binary relation which holds between comparable elements that are immediate neighbours. The covering relation is commonly used to graphically express the partial order by means of the Hasse diagram. Let be a set with a partial order . As usual, let be the relation on such that if and only if and . Let and be elements of . Then covers , written , if and there is no element such that .
Reflexive closureIn mathematics, the reflexive closure of a binary relation on a set is the smallest reflexive relation on that contains A relation is called if it relates every element of to itself. For example, if is a set of distinct numbers and means " is less than ", then the reflexive closure of is the relation " is less than or equal to ". The reflexive closure of a relation on a set is given by In plain English, the reflexive closure of is the union of with the identity relation on As an example, if then the relation is already reflexive by itself, so it does not differ from its reflexive closure.
Semigroup with involutionIn mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse.
Image d'une applicationvignette| est une fonction de dans . L'ovale jaune dans est l'image de . On appelle image d'une application f (d'un ensemble A vers un ensemble B) l' par f de l'ensemble de départ A. C'est donc le sous-ensemble de B contenant les de tous les éléments de A, et uniquement ces images. On le note Im(f). Exemple : Une application est surjective si et seulement si son image coïncide avec son ensemble d'arrivée. Lemme des noyaux Catégorie abélienne Limite projective Noyau (algèbre) (autrement dit : d'une relation
Trichotomie (mathématiques)En mathématiques, le principe de la trichotomie indique que tout nombre réel est soit positif, soit négatif, soit nul. sur un ensemble X tel que pour tous x et y, seulement l'une des relations suivantes tient: , ou . En notation mathématique, ceci est noté En supposant que la commande est irréflexive et transitive, cela peut être simplifié tel que En logique classique, l'axiome de la trichotomie tient à la comparaison ordinaire entre les nombres réels, et donc aussi pour les comparaisons entre entiers et entre nombres rationnels.
ComparabilityIn mathematics, two elements x and y of a set P are said to be comparable with respect to a binary relation ≤ if at least one of x ≤ y or y ≤ x is true. They are called incomparable if they are not comparable. A binary relation on a set is by definition any subset of Given is written if and only if in which case is said to be to by An element is said to be , or (), to an element if or Often, a symbol indicating comparison, such as (or and many others) is used instead of in which case is written in place of which is why the term "comparable" is used.
Transitive reductionIn the mathematical field of graph theory, a transitive reduction of a directed graph D is another directed graph with the same vertices and as few edges as possible, such that for all pairs of vertices v, w a (directed) path from v to w in D exists if and only if such a path exists in the reduction. Transitive reductions were introduced by , who provided tight bounds on the computational complexity of constructing them. More technically, the reduction is a directed graph that has the same reachability relation as D.