Riemann sphereIn mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value for infinity. With the Riemann model, the point is near to very large numbers, just as the point is near to very small numbers. The extended complex numbers are useful in complex analysis because they allow for division by zero in some circumstances, in a way that makes expressions such as well-behaved.
Projective lineIn mathematics, a projective line is, roughly speaking, the extension of a usual line by a point called a point at infinity. The statement and the proof of many theorems of geometry are simplified by the resultant elimination of special cases; for example, two distinct projective lines in a projective plane meet in exactly one point (there is no "parallel" case). There are many equivalent ways to formally define a projective line; one of the most common is to define a projective line over a field K, commonly denoted P1(K), as the set of one-dimensional subspaces of a two-dimensional K-vector space.
Poincaré half-plane modelIn non-Euclidean geometry, the Poincaré half-plane model is the upper half-plane, denoted below as H , together with a metric, the Poincaré metric, that makes it a model of two-dimensional hyperbolic geometry. Equivalently the Poincaré half-plane model is sometimes described as a complex plane where the imaginary part (the y coordinate mentioned above) is positive. The Poincaré half-plane model is named after Henri Poincaré, but it originated with Eugenio Beltrami who used it, along with the Klein model and the Poincaré disk model, to show that hyperbolic geometry was equiconsistent with Euclidean geometry.
Inversive geometryIn geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied. Inversion seems to have been discovered by a number of people contemporaneously, including Steiner (1824), Quetelet (1825), Bellavitis (1836), Stubbs and Ingram (1842-3) and Kelvin (1845).
Unit diskIn mathematics, the open unit disk (or disc) around P (where P is a given point in the plane), is the set of points whose distance from P is less than 1: The closed unit disk around P is the set of points whose distance from P is less than or equal to one: Unit disks are special cases of disks and unit balls; as such, they contain the interior of the unit circle and, in the case of the closed unit disk, the unit circle itself. Without further specifications, the term unit disk is used for the open unit disk about the origin, , with respect to the standard Euclidean metric.
Pole and polarIn geometry, a pole and polar are respectively a point and a line that have a unique reciprocal relationship with respect to a given conic section. Polar reciprocation in a given circle is the transformation of each point in the plane into its polar line and each line in the plane into its pole. Pole and polar have several useful properties: If a point P lies on the line l, then the pole L of the line l lies on the polar p of point P. If a point P moves along a line l, its polar p rotates about the pole L of the line l.
Erlangen programIn mathematics, the Erlangen program is a method of characterizing geometries based on group theory and projective geometry. It was published by Felix Klein in 1872 as Vergleichende Betrachtungen über neuere geometrische Forschungen. It is named after the University Erlangen-Nürnberg, where Klein worked. By 1872, non-Euclidean geometries had emerged, but without a way to determine their hierarchy and relationships. Klein's method was fundamentally innovative in three ways: Projective geometry was emphasized as the unifying frame for all other geometries considered by him.
Fixed point (mathematics)hatnote|1=Fixed points in mathematics are not to be confused with other uses of "fixed point", or stationary points where math|1=f(x) = 0. In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation. Specifically for functions, a fixed point is an element that is mapped to itself by the function. Formally, c is a fixed point of a function f if c belongs to both the domain and the codomain of f, and f(c) = c.
Generalised circleIn geometry, a generalized circle, sometimes called a cline or circline, is a straight line or a circle. The natural setting for generalized circles is the extended plane, a plane along with one point at infinity through which every straight line is considered to pass. Given any three distinct points in the extended plane, there exists precisely one generalized circle passing through all three.
Projective harmonic conjugateIn projective geometry, the harmonic conjugate point of a point on the real projective line with respect to two other points is defined by the following construction: Given three collinear points A, B, C, let L be a point not lying on their join and let any line through C meet LA, LB at M, N respectively. If AN and BM meet at K, and LK meets AB at D, then D is called the harmonic conjugate of C with respect to A and B. The point D does not depend on what point L is taken initially, nor upon what line through C is used to find M and N.