Configuration management (CM) is a systems engineering process for establishing and maintaining consistency of a product's performance, functional, and physical attributes with its requirements, design, and operational information throughout its life. The CM process is widely used by military engineering organizations to manage changes throughout the system lifecycle of complex systems, such as weapon systems, military vehicles, and information systems. Outside the military, the CM process is also used with IT service management as defined by ITIL, and with other domain models in the civil engineering and other industrial engineering segments such as roads, bridges, canals, dams, and buildings. CM applied over the life cycle of a system provides visibility and control of its performance, functional, and physical attributes. CM verifies that a system performs as intended, and is identified and documented in sufficient detail to support its projected life cycle. The CM process facilitates orderly management of system information and system changes for such beneficial purposes as to revise capability; improve performance, reliability, or maintainability; extend life; reduce cost; reduce risk and liability; or correct defects. The relatively minimal cost of implementing CM is returned manyfold in cost avoidance. The lack of CM, or its ineffectual implementation, can be very expensive and sometimes can have such catastrophic consequences such as failure of equipment or loss of life. CM emphasizes the functional relation between parts, subsystems, and systems for effectively controlling system change. It helps to verify that proposed changes are systematically considered to minimize adverse effects. Changes to the system are proposed, evaluated, and implemented using a standardized, systematic approach that ensures consistency, and proposed changes are evaluated in terms of their anticipated impact on the entire system. CM verifies that changes are carried out as prescribed and that documentation of items and systems reflects their true configuration.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
EE-584: Spacecraft design and system engineering
The main objective of the course is to provide tools and notions for spacecraft design. The course will start with an introduction on systems engineering, then the different subsystems of a spacecraft
EE-515: Fundamentals of biosensors and electronic biochips
The labels "biosensor"€ and "eBiochip" have been employed to refer to the most diverse systems and in several fields of application. The course is meant not only to provide means to dig into this sea
MATH-448: Statistical analysis of network data
A first course in statistical network analysis and applications.
Show more
Related MOOCs (2)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.