In semiconductor electronics, Dennard scaling, also known as MOSFET scaling, is a scaling law which states roughly that, as transistors get smaller, their power density stays constant, so that the power use stays in proportion with area; both voltage and current scale (downward) with length. The law, originally formulated for MOSFETs, is based on a 1974 paper co-authored by Robert H. Dennard, after whom it is named. Dennard's model of MOSFET scaling implies that, with every technology generation: Transistor dimensions could be scaled by −30% (0.7×). This has the following effects simultaneously: The area of an individual device reduces by 50%, because area is length times width. The capacitance associated with the device, C, is reduced by 30% (0.7×), because capacitance varies with area over distance. To keep the electric field unchanged, the voltage, V, is reduced by 30% (0.7×), because voltage is field times length. Characteristics such as current and transition time are likewise scaled down by 30%, due to their relationship with capacitance and voltage. Overall circuit delay is assumed to be dominated by transition time, so it too is reduced by 30%. The above effects lead to an increase in operating frequency, f, by about 40% (1.4×), because frequency varies with one over delay. Power consumption of an individual transistor decreases by 50%, because active power is CV2f. Therefore, in every technology generation, the area and power consumption of individual transistors is halved. In other words, if the transistor density doubles, power consumption (with twice the number of transistors) stays the same. Moore's law says that the number of transistors doubles approximately every two years. Combined with Dennard scaling, this means that performance per joule grows even faster, doubling about every 18 months (1.5 years). This trend is sometimes referred to as Koomey's law. The rate of doubling was originally suggested by Koomey to be 1.57 years, but more recent estimates suggest this is slowing.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (36)
Related concepts (2)
Moore's law
Moore's law is the observation that the number of transistors in an integrated circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical trend. Rather than a law of physics, it is an empirical relationship linked to gains from experience in production. The observation is named after Gordon Moore, the co-founder of Fairchild Semiconductor and Intel (and former CEO of the latter), who in 1965 posited a doubling every year in the number of components per integrated circuit, and projected this rate of growth would continue for at least another decade.
Transistor
A transistor is a semiconductor device used to amplify or switch electrical signals and power. It is one of the basic building blocks of modern electronics. It is composed of semiconductor material, usually with at least three terminals for connection to an electronic circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.