Wreath productIn group theory, the wreath product is a special combination of two groups based on the semidirect product. It is formed by the action of one group on many copies of another group, somewhat analogous to exponentiation. Wreath products are used in the classification of permutation groups and also provide a way of constructing interesting examples of groups. Given two groups and (sometimes known as the bottom and top), there exist two variations of the wreath product: the unrestricted wreath product and the restricted wreath product .
Combinatorial group theoryIn mathematics, combinatorial group theory is the theory of free groups, and the concept of a presentation of a group by generators and relations. It is much used in geometric topology, the fundamental group of a simplicial complex having in a natural and geometric way such a presentation. A very closely related topic is geometric group theory, which today largely subsumes combinatorial group theory, using techniques from outside combinatorics besides.
Normal closure (group theory)In group theory, the normal closure of a subset of a group is the smallest normal subgroup of containing Formally, if is a group and is a subset of the normal closure of is the intersection of all normal subgroups of containing : The normal closure is the smallest normal subgroup of containing in the sense that is a subset of every normal subgroup of that contains The subgroup is generated by the set of all conjugates of elements of in Therefore one can also write Any normal subgroup is equal to its normal
Lattice (discrete subgroup)In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of Rn, this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood. The theory is particularly rich for lattices in semisimple Lie groups or more generally in semisimple algebraic groups over local fields.
Camille JordanMarie Ennemond Camille Jordan (ʒɔʁdɑ̃; 5 January 1838 – 22 January 1922) was a French mathematician, known both for his foundational work in group theory and for his influential Cours d'analyse. Jordan was born in Lyon and educated at the École polytechnique. He was an engineer by profession; later in life he taught at the École polytechnique and the Collège de France, where he had a reputation for eccentric choices of notation.
Non-abelian groupIn mathematics, and specifically in group theory, a non-abelian group, sometimes called a non-commutative group, is a group (G, ∗) in which there exists at least one pair of elements a and b of G, such that a ∗ b ≠ b ∗ a. This class of groups contrasts with the abelian groups. (In an abelian group, all pairs of group elements commute). Non-abelian groups are pervasive in mathematics and physics. One of the simplest examples of a non-abelian group is the dihedral group of order 6. It is the smallest finite non-abelian group.
Steiner systemIn combinatorial mathematics, a Steiner system (named after Jakob Steiner) is a type of block design, specifically a t-design with λ = 1 and t = 2 or (recently) t ≥ 2. A Steiner system with parameters t, k, n, written S(t,k,n), is an n-element set S together with a set of k-element subsets of S (called blocks) with the property that each t-element subset of S is contained in exactly one block. In an alternate notation for block designs, an S(t,k,n) would be a t-(n,k,1) design. This definition is relatively new.
Divisible groupIn mathematics, especially in the field of group theory, a divisible group is an abelian group in which every element can, in some sense, be divided by positive integers, or more accurately, every element is an nth multiple for each positive integer n. Divisible groups are important in understanding the structure of abelian groups, especially because they are the injective abelian groups. An abelian group is divisible if, for every positive integer and every , there exists such that .
Tits groupIn group theory, the Tits group 2F4(2)′, named for Jacques Tits (tits), is a finite simple group of order 211 · 33 · 52 · 13 = 17,971,200. It is sometimes considered a 27th sporadic group. The Ree groups 2F4(22n+1) were constructed by , who showed that they are simple if n ≥ 1. The first member of this series 2F4(2) is not simple. It was studied by who showed that it is almost simple, its derived subgroup 2F4(2)′ of index 2 being a new simple group, now called the Tits group.
Hilbert's fifth problemHilbert's fifth problem is the fifth mathematical problem from the problem list publicized in 1900 by mathematician David Hilbert, and concerns the characterization of Lie groups. The theory of Lie groups describes continuous symmetry in mathematics; its importance there and in theoretical physics (for example quark theory) grew steadily in the twentieth century. In rough terms, Lie group theory is the common ground of group theory and the theory of topological manifolds.