Concept

Non-analytic smooth function

In mathematics, smooth functions (also called infinitely differentiable functions) and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not true, as demonstrated with the counterexample below. One of the most important applications of smooth functions with compact support is the construction of so-called mollifiers, which are important in theories of generalized functions, such as Laurent Schwartz's theory of distributions. The existence of smooth but non-analytic functions represents one of the main differences between differential geometry and analytic geometry. In terms of sheaf theory, this difference can be stated as follows: the sheaf of differentiable functions on a differentiable manifold is fine, in contrast with the analytic case. The functions below are generally used to build up partitions of unity on differentiable manifolds. Consider the function defined for every real number x. The function f has continuous derivatives of all orders at every point x of the real line. The formula for these derivatives is where pn(x) is a polynomial of degree n − 1 given recursively by p1(x) = 1 and for any positive integer n. From this formula, it is not completely clear that the derivatives are continuous at 0; this follows from the one-sided limit for any nonnegative integer m. By the power series representation of the exponential function, we have for every natural number (including zero) because all the positive terms for are added. Therefore, dividing this inequality by and taking the limit from above, We now prove the formula for the nth derivative of f by mathematical induction. Using the chain rule, the reciprocal rule, and the fact that the derivative of the exponential function is again the exponential function, we see that the formula is correct for the first derivative of f for all x > 0 and that p1(x) is a polynomial of degree 0. Of course, the derivative of f is zero for x < 0.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (18)
MATH-207(c): Analysis IV (for EL, GM, MX)
This course serves as an introduction to the theory of complex analysis, Fourier series and Fourier transforms, the Laplace transform, with applications to the theory of ordinary and partial different
MATH-207(d): Analysis IV
The course studies the fundamental concepts of complex analysis and Laplace analysis with a view to their use to solve multidisciplinary scientific engineering problems.
MATH-329: Continuous optimization
This course introduces students to continuous, nonlinear optimization. We study the theory of optimization with continuous variables (with full proofs), and we analyze and implement important algorith
Show more
Related lectures (119)
Holomorphic Functions: Taylor Series Expansion
Covers the basic properties of holomorphic maps and Taylor series expansions in complex analysis.
Non-analytic Smooth Functions
Explores non-analytic smooth functions, their properties, and applications in differential geometry and partitioning unity.
Tangent to Graph of a Function
Explores finding the equation of the tangent line to a function's graph at a point.
Show more
Related publications (85)

Scalable constrained optimization

Maria-Luiza Vladarean

Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...
EPFL2024

BPS invariants from p-adic integrals

Dimitri Stelio Wyss, Francesca Carocci, Giulio Orecchia

We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...
Cambridge Univ Press2024

On the Sums over Inverse Powers of Zeros of the Hurwitz Zeta Function and Some Related Properties of These Zeros

Recently, we have applied the generalized Littlewood theorem concerning contour integrals of the logarithm of the analytical function to find the sums over inverse powers of zeros for the incomplete gamma and Riemann zeta functions, polygamma functions, an ...
MDPI2024
Show more
Related concepts (8)
Analyticity of holomorphic functions
In complex analysis, a complex-valued function of a complex variable : is said to be holomorphic at a point if it is differentiable at every point within some open disk centered at , and is said to be analytic at if in some open disk centered at it can be expanded as a convergent power series (this implies that the radius of convergence is positive). One of the most important theorems of complex analysis is that holomorphic functions are analytic and vice versa.
Smoothness
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called differentiability class. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or function).
Bump function
In mathematics, a bump function (also called a test function) is a function on a Euclidean space which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supported. The set of all bump functions with domain forms a vector space, denoted or The dual space of this space endowed with a suitable topology is the space of distributions. The function given by is an example of a bump function in one dimension.
Show more
Related MOOCs (1)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.