**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Dynamic logic (digital electronics)

Summary

In integrated circuit design, dynamic logic (or sometimes clocked logic) is a design methodology in combinational logic circuits, particularly those implemented in metal–oxide–semiconductor (MOS) technology. It is distinguished from the so-called static logic by exploiting temporary storage of information in stray and gate capacitances. It was popular in the 1970s and has seen a recent resurgence in the design of high-speed digital electronics, particularly central processing units (CPUs). Dynamic logic circuits are usually faster than static counterparts and require less surface area, but are more difficult to design. Dynamic logic has a higher average rate of voltage transitions than static logic, but the capacitive loads being transitioned are smaller so the overall power consumption of dynamic logic may be higher or lower depending on various tradeoffs. When referring to a particular logic family, the dynamic adjective usually suffices to distinguish the design methodology, e.g. dynamic CMOS or dynamic SOI design.
Besides its use of dynamic state storage via voltages on capacitances, dynamic logic is distinguished from so-called static logic in that dynamic logic uses a clock signal in its implementation of combinational logic. The usual use of a clock signal is to synchronize transitions in sequential logic circuits. For most implementations of combinational logic, a clock signal is not even needed. The static/dynamic terminology used to refer to combinatorial circuits is related to the use of the same adjectives used to distinguish memory devices, e.g. static RAM from dynamic RAM, in that dynamic RAM stores state dynamically as voltages on capacitances, which must be periodically refreshed. But there are also differences in usage; the clock can be stopped in the appropriate phase in a system with dynamic logic and static storage.
The largest difference between static and dynamic logic is that in dynamic logic, a clock signal is used to evaluate combinational logic.

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related lectures (32)

Related concepts (6)

Related courses (8)

Related publications (73)

Related people (29)

Related units (7)

Dynamic Logic: Basics and Implementations

Explores dynamic logic fundamentals, hazards, charge-sharing issues, clocking schemes, and various implementations to enhance performance.

Transistor MOSFET: Operation and Applications

Explores the operation and applications of the MOSFET transistor in various regimes and logic circuits.

Digital Circuits: Logic Basics

Introduces digital circuits, covering binary systems, logic operators, Boolean algebra, memory elements, and practical examples like BCD decoders and shift registers.

Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", siːmɑːs, -ɒs) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips (including CMOS BIOS), and other digital logic circuits.

Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation (particle radiation and high-energy electromagnetic radiation), especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

In electronics and especially synchronous digital circuits, a clock signal (historically also known as logic beat) is an electronic logic signal (voltage or current) which oscillates between a high and a low state at a constant frequency and is used like a metronome to synchronize actions of digital circuits. In a synchronous logic circuit, the most common type of digital circuit, the clock signal is applied to all storage devices, flip-flops and latches, and causes them all to change state simultaneously, preventing race conditions.

Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn

In this project-based course, students collect hands-on experience with designing full-custom digital VLSI circuits in dynamic logic. They learn to carry out the design and optimization on transistor

This lecture overviews and discusses the last trends in the technology and principles of nanoelectronic devices for more aggressive scaling, better performances, added functionalities and lower energy

Ontological neighbourhood

Alexandre Schmid, Keyvan Farhang Razi

A low-power digital charge balancing system, which ensures the safe operation of constant-current biphasic stimulation is presented. The concept of the proposed charge-balancing technique is to utilize a hybrid method consisting of anodic pulse modulation ...

Mohammad Samizadeh Nikooytabalvandani

There is a never-ending push for electronic systems to provide faster operation speeds, higher energy efficiencies, and higher power capabilities at smaller scales. These requirements are apparent in different areas of electronics, from radiofrequency (RF) ...

Giovanni De Micheli, Alessandro Tempia Calvino

Rapid single-flux quantum (RSFQ) is one of the most advanced and promising superconducting logic families, offering exceptional energy efficiency and speed. RSFQ technology requires delay registers (DFFs) and splitter cells to satisfy the path-balancing an ...

2024