Matrix (mathematics)In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
Eigenvalues and eigenvectorsIn linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor. Geometrically, a transformation matrix rotates, stretches, or shears the vectors it acts upon. The eigenvectors for a linear transformation matrix are the set of vectors that are only stretched, with no rotation or shear.
Tensor productIn mathematics, the tensor product of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map that maps a pair to an element of denoted An element of the form is called the tensor product of v and w. An element of is a tensor, and the tensor product of two vectors is sometimes called an elementary tensor or a decomposable tensor. The elementary tensors span in the sense that every element of is a sum of elementary tensors.
Dimension (vector space)In mathematics, the dimension of a vector space V is the cardinality (i.e., the number of vectors) of a basis of V over its base field. It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension. For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say is if the dimension of is finite, and if its dimension is infinite.
Matrix multiplicationIn mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.
Definite matrixIn mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of Positive semi-definite matrices are defined similarly, except that the scalars and are required to be positive or zero (that is, nonnegative).
Hilbert spaceIn mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
Invertible matrixIn linear algebra, an n-by-n square matrix A is called invertible (also nonsingular, nondegenerate or (rarely used) regular), if there exists an n-by-n square matrix B such that where In denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A−1. Matrix inversion is the process of finding the matrix B that satisfies the prior equation for a given invertible matrix A.
DeterminantIn mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix A is denoted det(A), det A, or .
TensorIn mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product.