**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Surface (mathematics)

Summary

In mathematics, a surface is a mathematical model of the common concept of a surface. It is a generalization of a plane, but, unlike a plane, it may be curved; this is analogous to a curve generalizing a straight line.
There are several more precise definitions, depending on the context and the mathematical tools that are used for the study. The simplest mathematical surfaces are planes and spheres in the Euclidean 3-space. The exact definition of a surface may depend on the context. Typically, in algebraic geometry, a surface may cross itself (and may have other singularities), while, in topology and differential geometry, it may not.
A surface is a topological space of dimension two; this means that a moving point on a surface may move in two directions (it has two degrees of freedom). In other words, around almost every point, there is a coordinate patch on which a two-dimensional coordinate system is defined. For example, the surface of the Earth resembles (ideally) a two-dimensional sphere, and latitude and longitude provide two-dimensional coordinates on it (except at the poles and along the 180th meridian).
Often, a surface is defined by equations that are satisfied by the coordinates of its points. This is the case of the graph of a continuous function of two variables. The set of the zeros of a function of three variables is a surface, which is called an implicit surface. If the defining three-variate function is a polynomial, the surface is an algebraic surface. For example, the unit sphere is an algebraic surface, as it may be defined by the implicit equation
A surface may also be defined as the , in some space of dimension at least 3, of a continuous function of two variables (some further conditions are required to insure that the image is not a curve). In this case, one says that one has a parametric surface, which is parametrized by these two variables, called parameters. For example, the unit sphere may be parametrized by the Euler angles, also called longitude u and latitude v by
Parametric equations of surfaces are often irregular at some points.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (15)

Related units (4)

Related concepts (37)

Related publications (125)

Related people (23)

Related lectures (55)

Ontological neighbourhood

MATH-201: Analysis III

Calcul différentiel et intégral.
Eléments d'analyse complexe.

MATH-126: Geometry for architects II

Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.

MATH-213: Differential geometry

Ce cours est une introduction à la géométrie différentielle classique des courbes et des surfaces, principalement dans le plan et l'espace euclidien.

Implicit surface

In mathematics, an implicit surface is a surface in Euclidean space defined by an equation An implicit surface is the set of zeros of a function of three variables. Implicit means that the equation is not solved for x or y or z. The graph of a function is usually described by an equation and is called an explicit representation. The third essential description of a surface is the parametric one: where the x-, y- and z-coordinates of surface points are represented by three functions depending on common parameters .

Geometry

Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.

Surface of revolution

A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) one full revolution around an axis of rotation (normally not intersecting the generatrix, except at its endpoints). The volume bounded by the surface created by this revolution is the solid of revolution. Examples of surfaces of revolution generated by a straight line are cylindrical and conical surfaces depending on whether or not the line is parallel to the axis.

Surface Normals: Vector Analysis

Explains surface normals for parametric and implicit surfaces, focusing on vector analysis and examples with spheres.

Surface Geometry: Geodesics and Surface Area

Explores geodesics and surface area calculation for rotationally symmetric surfaces.

Surface Integrals: Regular Parametrization

Covers surface integrals with a focus on regular parametrization and the importance of understanding the normal vector.

Anja Skrivervik, Denys Nikolayev

Conformal phased arrays can be found in many applications due to their ability to fit tridimensional surfaces and, thanks to their scanning performance, can excel planar arrays. However, most of the previously proposed analysis methods can be applied only ...

, ,

To predict the response of masonry buildings to various types of loads, engineers use finite element models, specifically solid-element and macro-element models. For predicting masonry responses to seismic events in particular, equivalent frame models-a su ...

Let X be a complex projective K3 surface and let T-X be its transcendental lattice; the characteristic polynomials of isometries of T-X induced by automorphisms of X are powers of cyclotomic polynomials. Which powers of cyclotomic polynomials occur? The ai ...