In telecommunications and computer networking, a network packet is a formatted unit of data carried by a packet-switched network. A packet consists of control information and user data; the latter is also known as the payload. Control information provides data for delivering the payload (e.g., source and destination network addresses, error detection codes, or sequencing information). Typically, control information is found in packet headers and trailers.
In packet switching, the bandwidth of the transmission medium is shared between multiple communication sessions, in contrast to circuit switching, in which circuits are preallocated for the duration of one session and data is typically transmitted as a continuous bit stream.
In the seven-layer OSI model of computer networking, packet strictly refers to a protocol data unit at layer 3, the network layer. A data unit at layer 2, the data link layer, is a frame. In layer 4, the transport layer, the data units are segments and datagrams. Thus, in the example of TCP/IP communication over Ethernet, a TCP segment is carried in one or more IP packets, which are each carried in one or more Ethernet frames.
The basis of the packet concept is the postal letter: the header is like the envelope, the payload is the entire content inside the envelope, and the footer would be your signature at the bottom.
Network design can achieve two major results by using packets: error detection and multiple host addressing.
Communications protocols use various conventions for distinguishing the elements of a packet and for formatting the user data. For example, in Point-to-Point Protocol, the packet is formatted in 8-bit bytes, and special characters are used to delimit elements. Other protocols, like Ethernet, establish the start of the header and data elements by their location relative to the start of the packet. Some protocols format the information at a bit level instead of a byte level.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies. The nodes of a computer network can include personal computers, servers, networking hardware, or other specialized or general-purpose hosts.
A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents. On retrieval, the calculation is repeated and, in the event the check values do not match, corrective action can be taken against data corruption. CRCs can be used for error correction (see bitfilters).
A datagram is a basic transfer unit associated with a packet-switched network. Datagrams are typically structured in header and payload sections. Datagrams provide a connectionless communication service across a packet-switched network. The delivery, arrival time, and order of arrival of datagrams need not be guaranteed by the network. Packet switching#History In the early 1970s, the term datagram was created by combining the words data and telegram by the CCITT rapporteur on packet switching, Halvor Bothner-By.
Explores multi-hop wireless networks, routing protocols, and innovative solutions to enhance wireless communication efficiency.
Covers conditional probability distributions and introduces the concept of conditional expected value.
Explores network coding for efficient data delivery in wireless networks, optimizing packet transmissions through opportunistic routing and coding.
In 1948, Claude Shannon laid the foundations of information theory, which grew out of a study to find the ultimate limits of source compression, and of reliable communication. Since then, information theory has proved itself not only as a quest to find the ...
Time-sensitive networks provide worst-case guarantees for applications in domains such as the automobile, automation, avionics, and the space industries. A violation of these guarantees can cause considerable financial loss and serious damage to human live ...
In time-sensitive networks, bounds on worst-case delays are typically obtained by using network calculus and assuming that flows are constrained by bit-level arrival curves. However, in IEEE TSN or IETF DetNet, source flows are constrained on the number of ...