A body plan, Bauplan (), or ground plan is a set of morphological features common to many members of a phylum of animals. The vertebrates share one body plan, while invertebrates have many. This term, usually applied to animals, envisages a "blueprint" encompassing aspects such as symmetry, layers, segmentation, nerve, limb, and gut disposition. Evolutionary developmental biology seeks to explain the origins of diverse body plans. Body plans have historically been considered to have evolved in a flash in the Ediacaran biota; filling the Cambrian explosion with the results, and a more nuanced understanding of animal evolution suggests gradual development of body plans throughout the early Palaeozoic. Recent studies in animals and plants started to investigate whether evolutionary constraints on body plan structures can explain the presence of developmental constraints during embryogenesis such as the phenomenon referred to as phylotypic stage. Among the pioneering zoologists, Linnaeus identified two body plans outside the vertebrates; Cuvier identified three; and Haeckel had four, as well as the Protista with eight more, for a total of twelve. For comparison, the number of phyla recognised by modern zoologists has risen to 36. In his 1735 book Systema Naturæ, Swedish botanist Linnaeus grouped the animals into quadrupeds, birds, "amphibians" (including tortoises, lizards and snakes), fish, "insects" (Insecta, in which he included arachnids, crustaceans and centipedes) and "worms" (Vermes). Linnaeus's Vermes included effectively all other groups of animals, not only tapeworms, earthworms and leeches but molluscs, sea urchins and starfish, jellyfish, squid and cuttlefish. In his 1817 work, Le Règne Animal, French zoologist Georges Cuvier combined evidence from comparative anatomy and palaeontology to divide the animal kingdom into four body plans.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
BIO-221: Cell and developmental biology for engineers
Students will learn essentials of cell and developmental biology with an engineering mind set, with an emphasis on animal systems and quantitative approaches.
Related lectures (10)
Eco-Evo-Devo: Plasticity and Evolution
Discusses developmental plasticity, polyphenism, symbiosis, genetic assimilation, and Hox genes in evolution.
Developmental Biology: Morphogens and Cell Patterning
Delves into the role of morphogens in cell patterning and explores centrosome movement in cellular interactions.
Early Embryo Patterning: Morphogens and Genetic Screens
Explores early embryo patterning through morphogens and genetic screens, emphasizing the role of key genes like Bicoid and Nanos.
Show more
Related publications (38)

A CTCF-dependent mechanism underlies the Hox timer relation to a segmented body plan

Denis Duboule, Hocine Rekaik

During gastrulation, Hox genes are activated in a timesequence that follows the order of the genes along their clusters. This property, which is observed in all animals that develop following a progressive rostral-to-caudal morphogenesis, is associated wit ...
Current Biology Ltd2024

Beyond undulation! Body morphology and sensing components of elongated animals and robots reveal skills to maintain competent locomotion

Laura Isabel Paez Coy

Locomotion is an essential evolutive innovation of living beings that allows them to colonize and dominate the planet. As diverse as animal morphologies are (living) and were (extinct), their locomotion modalities are also diverse. In particular, animal mo ...
EPFL2023

Automatic Body Segment and Side Recognition of an Inertial Measurement Unit Sensor during Gait

Kamiar Aminian, Xavier Crevoisier, Robin Martin

Inertial measurement unit (IMU) sensors are widely used for motion analysis in sports and rehabilitation. The attachment of IMU sensors to predefined body segments and sides (left/right) is complex, time-consuming, and error-prone. Methods for solving the ...
MDPI2023
Show more
Related concepts (18)
Animal
Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, have myocytes and are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. As of 2022, 2.16 million living animal species have been described—of which around 1.05 million are insects, over 85,000 are molluscs, and around 65,000 are vertebrates—but it has been estimated there are around 7.
Heterochrony
In evolutionary developmental biology, heterochrony is any genetically controlled difference in the timing, rate, or duration of a developmental process in an organism compared to its ancestors or other organisms. This leads to changes in the size, shape, characteristics and even presence of certain organs and features. It is contrasted with heterotopy, a change in spatial positioning of some process in the embryo, which can also create morphological innovation.
Segmentation (biology)
Segmentation in biology is the division of some animal and plant body plans into a series of repetitive segments. This article focuses on the segmentation of animal body plans, specifically using the examples of the taxa Arthropoda, Chordata, and Annelida. These three groups form segments by using a "growth zone" to direct and define the segments. While all three have a generally segmented body plan and use a growth zone, they use different mechanisms for generating this patterning.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.